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Abstract
The classical computational paradigm has difficulty dealing with the exponential growth of big data.
There is an urgent need for inexpensive solutions to this big data problem. Deoxyribonucleic acid
(DNA) offers a possible solution to this problem, especially because it has an extremely high data
storage capacity that can last for thousands of years. Data scientists have been developing various
experimental schemes for storing data in DNA. These schemes are not immune to errors, so it is of
interest to understand the limits of their storage capacity. In the current work, we used information
theory to estimate the theoretical limits of the storage capacity of two DNA storage schemes based on
four- and six-letter nucleotide alphabets, respectively. We recover the previously reported limit of 1.83
bits/nt for a four-letter alphabet scheme and also report a new limit of 2.38 bits/nt for a six-letter
alphabet scheme. This indicates that the storage capacity of the commonly employed scheme based on
a four-letter alphabet is 23.11% less than one based on a six-letter alphabet, which has thus far been
little studied.
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1. Introduction

1.1 Background of Study

Data is very important to human kind because of its use in daily life. Humans have been using data
for social and economic development. The demand for data has been increasing enormously and has
created an emergent demand for massive data repositories (Yazdi et al., 2015). The increased volume
of data, demands more capacity, scalability and efficient accessibility without an increase in resource
demands.

There is an increasing demand in different organisations to use analytics applications to extract invisible
information or those which would be impossible to derive using ordinary methods present. Likewise,
different industries have been producing very large data sets for decades. This is a main reason behind the
rise of big data. Today’s big data does not include only the volume of the data sets, but also includes
dealing with unstructured data. Therefore, the challenges is not only to come up with the storage
architecture that is capable of storing this data set, but also that which will enhance the processing and
analysis of the data set. Hence, technological advancement is inevitable (Computer-weekly).

Saxena et al. (2013) pointed out that, the current super computer uses the old technology which was used
in the mechanically working dinosaurs in 1930s. This account for the challenge the modern electronic
devices face in dealing with big data. There is a need for a new technology that will solve the problem
of big data and increase the efficiency of digital devices. Current researchers are mainly focused on
investigating the possibilities of using different technology to develop modern computer that is capable
of handling the problems currently the digital world is facing. The new areas of computing, emerging in
the field of quantum computing, optical computing and DNA(Deoxyribonucleic acid) computing, show
promising results toward revolutions of entire digital media and computational models (Saxena et al.,
2013). In this study our main focus is on the DNA computing technology.

DNA computing uses the information-processing capabilities of the DNA structure to counteract many
drawbacks of the classical computers for example the low storage capacity. It is better to understand
the new computing paradigm whose data structure and operations are different from the existing ones.
The purpose of this new computational paradigm is to challenge the existing computational approaches
and as a result, to bring the best solutions to the problems which the current computing paradigm is
facing (Paun et al., 2005).

DNA computing is evolving with numerous range of applications in the digital world. It is employed
to solve many combinatorial problems and offers a fundamental building block for building large scale
nano-structures. DNA computing forms a basis of using the reversible logic gates in circuit synthesis.
In addition to that, DNA computing gives high-density storage capacity (Ezziane, 2005; Tagore et al.,
2010). In this work we concentrate on the later application.

The high-density storage capacity of DNA storage devices is very promising candidate to build upon an
urgent solution of big data problem (Blawat et al., 2016). The DNA storage devices have unbelievable
storage capacity compared to the ordinary storage devices such as CDs, DVDs, HDDs and Blu-rays
discs. For example 1 gram of DNA holds 700 TB of data, this requires 233 pieces of 3 TB hard drives,
weighing 151 kg in total (Saxena et al., 2013).Therefore, the classical computational paradigm requires
an enormous expansion of the available resources to face the challenge of the observed exponential
growth of data.
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The DNA storage has been considered to be a potential medium for digital data storage since it has got
many advantages compared to other forms of storage medium. DNA storage is extremely dense with
the theoretical limit above 1 exabytes/mm3. It has longer term storage solution and is often readable
despite the degradation in harsh environments (Church et al., 2012; Bornholt et al., 2016). Moreover,
DNA storage devices, consume significantly less energy compared to other electronic storage devices
(De Silva and Ganegoda, 2016).

Despite the fact that DNA storage promises to provide better solution in the big data problem, there
are still several challenges to overcome. None of the available encoding models is not associated with
errors. Most of these models are cost infeasible and take a significant amount of time to read and
write data onto DNA. Other developed model are completely inaccurate and not distinctively decodable
(De Silva and Ganegoda, 2016; Bornholt et al., 2016).

Existing work aim at achieving the maximum net information density as possible has focused on con-
trolling redundancy in their schemes to come out with best results. Church et al. (2012) used the
binary scheme which has no error correcting code or fold redundancy1 encoded 659 megabytes(MB)
and achieve the net information density of 0.83 bits/nt. Goldman et al. (2013) used a ternary scheme
that has one parity nucleotide for error detection and two nucleotides to detect the reverse complement
and a four redundancy, has achieved to encode 757 MB and achieve a net information density of 0.34
bits/nt. Blawat et al. (2016) used a scheme that employs Reed Solomon code, encoded 22 MB with
net information density of 0.92 bits/nt (Erlich and Zielinski, 2017).

The experimental schemes are characterised by high cost, inaccuracy, data breakage during encoding,
need of PCR (Polymerase chain reaction) and take significant amount of time to read and write data
onto DNA (De Silva and Ganegoda, 2016). These challenges make the process of developing the DNA
storage systems harder with small chance of success. Due to the many advantages that DNA storage
systems offer to the digital universe, there is a great need to come out with an approach that will serve
as the alternative solution to the experimental schemes and offer a good foundation of the experimental
schemes that will reduce the cost and increase their efficient. By the same reasoning, we formulate
DNA storage as an information transmission channel and use mutual information theory to quantify
the storage capacities of two DNA storage schemes, one based on a four-letter nucleotide alphabet and
another based on a six-letter alphabet.

1.2 Organisation of the Essay

We discuss the rise of the big data and the emergent of DNA storage system in Chapter 1. We show
the need of a new sophisticated architecture for data storage which does not require an expansion of
resources. We describe the challenges of this architecture and the possible solutions have been tried
thus far. We discuss the information theory in Chapter 2. We describe into details the theory behind
the communication channel capacity. We make use the tools discussed in Chapter 2 in DNA storage
device architectures in Chapter 3. We calculate the net information density of different schemes of DNA
storage devices using the theoretical approach we have discussed and compare the results with other
works. We then conclude our work in Chapter 4.

1Fold redundancy is defined as the number of reads which contribute to each consensus base e.g. a 4 fold redundancy
indicate the that an average of 4 sequencing reads spanned each base (Bouck et al., 1998).



2. Theory
In this chapter we reviewed the present theories used to describe a communication channel. We discuss
various aspects of entropy and mutual information in the communication channel. We define the entropy
and discuss its properties. We then describe the key concepts of the communication channel by defining
the channel capacity. We describe the quantification of the channel capacity of the channel using the
mutual information. We describe the properties of the channel capacity and discuss some examples of
channel capacity. We then discuss the DNA storage device architecture and show its basic structure
and then develop a mathematical formulation of finding the net information density of the channel.

2.1 Information Theory

Several communication channels are controlled by the signals they receive from their inputs and/or the
feedback from their outputs. The signals carry information about the sources of the communication
channel. Thus, we can understand the behaviour of the communication channel by understanding
the mutual relationship between the inputs and outputs of the channel through the information that
they carry and convey. (Godfrey-Smith and Sterelny, 2016). To make inference about the information
conveyed by these input signals, requires a thorough examination of the output signals(Lopes et al.,
2011).

In 1948, Claude Shannon published a mathematical theory of communication currently known as infor-
mation theory(IT)(Mousavian et al., 2016). According to Shannon, information is regarded as knowledge
that distinguishes a particular state of the system(signal or input) from other many available potential
states. For example, among the genes expressed in a particular disease, the knowledge of which sets of
genes are up-regulated and which sets of genes are down-regulated or not altered at all, can be regarded
as information. In Shannon’s information theory, the system that is capable of taking multiple states
is considered to be a source of information. The state of the system is presented mathematically as a
random variable(Rhee et al., 2012). The random variable is here defined as a mathematical object that
takes on a finite number of different states of the system with specific probabilities(Mousavian et al.,
2016). The random variable can gain, reduce or retain the amount of information it carries. This amount
of information is quantified by the Shannon entropy. The communication channel in which information
is transmitted consists of input and output random variables which depend on each other. Therefore, we
can resolve the input value by measurement of the output value and the amount of information gained
is then quantified using the mutual information(Rhee et al., 2012).

In the following sections, we discuss the concept of Shannon’s entropy, mutual information and channel
capacity. We later apply these concepts in different schemes of DNA storage devices.

2.2 The Shannon Entropy

Entropy can be defined as a measure of uncertainty about the state of the object in the system. It
quantifies the unpredictability of the value of a random variable(Adami, 2012; Rhee et al., 2012). In
the following section, we define the entropy, with examples, of the discrete random variable and discuss
its properties.
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2.2.1 Definition. A discrete random variable X that take values from x1, ..., xn with probabilities
p(x1), ..., p(xn) have a measure of uncertainty(entropy) given by

H(X) =
N∑

i=1
p(xi)log2

1
p(xi)

. (2.2.1)

To measure the entropy in bits, we use the normal convention in equation 2.2.1 by defining the entropy
in base 2 logarithm. Entropy is non-negative value. We provide the proof of this property here below;

2.2.2 Lemma.
H(X) ≥ 0

Proof. Since p(xi) is the probability that a discrete random variable X takes a value xi, then

0 ≤ p(xi) ≤ 1 for all i

This implies that
p(xi)log2 p(xi) ≤ 0

This implies that

−
N∑

i=1
p(xi)log2 p(xi) ≥ 0

∴ H(X) ≥ 0

Let us consider some few examples in system biology that describes the properties of entropy. The first
example, we consider the simplest case in which a particular gene (a random variable X) is either turned
on (state x1) or off(state x2) with equal probabilities (p(x1) = p(x2) = 1

2) to transcribe a certain kind
of protein. Deducing the entropy we have

H(Xon,off ) = 1
2 log24 = 1bit

Another example is the Jukes–Cantor substitution model, which assumes the four bases Adenine(A),
Cytosine(C), Thymine(T) and Guanine(G) of DNA are substituted with the same probabilities (pA =
pC = pT = pG = 1

4). In this particular case we calculate the entropy as follows

H(XA,C,T,G) = 4(1
4 log24) = 2 bits

The last example is the case in which the four bases A, C, T and G have different probabilities i.e
pA 6= pC 6= pT 6= pG a practical example being a Saccharomyces cerevisiae(Yeast) with the following
probabilities

pA = 0.3090
pT = 0.3080
pG = 0.1917
pC = 0.1913

The entropy becomes
H(XA,C,T,G) = 1.96 bits
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The first example involves only two states and the entropy is found to be 1 bit whereas in the second
example and third example increase in states has increased the entropy. In equal probable states such
as in example 2 the entropy is high compared to unequal probable states such as in example 3. We
develop a mathematical proof for this statement here below.

2.2.3 Proposition. Suppose X takes on N values. The entropy H(X) is maximized when X is
uniformly distributed on values of N

We use the Lagrange multipliers method to prove that entropy is maximum when X is uniformly
distributed.

Proof. Recall equation 2.2.1

H(X) =
N∑

i=1
p(xi)log2

1
p(xi)

. (2.2.2)

H(X) is maximized under the constraint
N∑

i=1
p(xi) = 1. (2.2.3)

Introducing the Lagrange multiplier in the equation 2.2.3 we get

H∗(X) =
N∑

i=1
p(xi)log2

1
p(xi)

+ λ(
N∑

i=1
p(xi)− 1). (2.2.4)

We then find the derivative of H∗(X) with respect to p(xi)

∂

∂p(xi)
H∗(X) = ∂

∂p(xi)
( N∑

i=1
p(xi)log2

1
p(xi)

+ λ(
N∑

i=1
p(xi)− 1)

)
,

∂

∂p(xi)
H∗(X) =

(
− log2p(xi)−

1
ln2 + λ

)
.

(2.2.5)

We set ∂
∂p(xi)H

∗(X) = 0 for maximization(
− ln p(xi)

ln 2 − 1
ln 2 + λ

)
= 0. (2.2.6)

We solve for p(xi) in the equation 2.2.6 above we get

p(xi) = exp
(
λln 2− 1

)
. (2.2.7)

We then substitute p(xi) into the equation 2.2.3 as follows
N∑

i=1
exp
(
λln 2− 1

)
= 1, (2.2.8)

Nexp
(
λln 2− 1

)
= 1,

exp
(
λln 2− 1

)
= 1
N
.

Therefore,
p∗(xi) = 1

N
(2.2.9)
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Thus, the entropy H(X) is maximum when X is uniformly distributed.

2.2.4 Remark. The upper bound of H(X) = log2 N. i.e.

max H(X) = log2 N = log2|X | (2.2.10)

In general, the entropy is a "simple function of the number of possible states and the probabilities"(Rhee
et al., 2012) as we have shown using the three examples above. We now define the concept of joint
entropy and conditional entropy as follows;

2.2.5 Definition. A pair of discrete random variables with a joint distribution p(x, y) has the joint
entropy H(X,Y ) defined as

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y)log2 p(x, y). (2.2.11)

2.2.6 Definition. The conditional entropy H(Y |X) can be defined as

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x). (2.2.12)

But,
H(Y |X = x) = −

∑
y∈Y

p(Y |X = x)log2 p(Y |X = x).

Therefore, the equation 2.2.12 can be written as

H(Y |X) = −
∑
x∈X

∑
y∈Y

p(x, y)log2 p(y|x). (2.2.13)

2.2.7 Theorem.
H(X,Y ) = H(X) +H(Y |X). (2.2.14)

Proof. Recalling equation 2.2.11 we have

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y)log2 p(x, y).

We can express the above equation as

= −
∑
x∈X

∑
y∈Y

p(x, y)log2 p(x)p(y|x),

= −
∑
x∈X

∑
y∈Y

p(x, y)log2 p(x)−
∑
x∈X

∑
y∈Y

p(x, y)log2 p(y|x)

∑
y∈Y

p(x, y) gives the marginal distribution of x and therefore,

∑
y∈Y

p(x, y) = p(x).

Hence,
= −

∑
x∈X

p(x)log2 p(x)−
∑
x∈X

∑
y∈Y

p(x, y)log2 p(y|x). (2.2.15)

We then substitute the equation 2.2.1 and 2.2.13 into 2.2.15 we get

H(X,Y ) = H(X) +H(Y |X).
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Thus;
H(X,Y ) = H(X) +H(Y |X). (2.2.16)

2.3 Mutual Information

Mutual information is defined as the amount of information that can be obtained about a random
variable X by observing another random variable Y . This implies that the information that Y provides
about X reduces uncertainty about X(Farhangmehr et al., 2014). Mutual information measures the
dependence between the variables X and Y (Zhang et al., 2012). It is always a non-negative value and
is equal to zero when the two variable are completely independent from each other.

2.3.1 Definition. Given two random variables X and Y with a joint probability mass function p(x, y)
and marginal probability mass functions p(x) and p(y). The mutual information I(X;Y ) is defined as

I(X,Y ) =
∑
x∈X

∑
y∈Y

p(x, y)log2
p(x, y)
p(x)p(y). (2.3.1)

Considering the equation 2.3.1 above we have

I(X,Y ) =
∑
x∈X

∑
y∈Y

p(x, y)log2
p(x, y)
p(x)p(y) .

The above equation can be simplified to

=
∑
x∈X

∑
y∈Y

p(x, y)log2
p(x|y)
p(x) ,

which is further simplified to

= −
∑
x∈X

∑
y∈Y

p(x, y)log2 p(x) +
∑
x∈X

∑
y∈Y

p(x, y)log2 p(x|y),

= −
∑
x∈X

p(x)log2 p(x)−
(
−
∑
x∈X

∑
y∈Y

p(x, y)log2 p(x|y)
)
.

We then use the equations 2.2.1 and 2.2.13 in the above equation to get

= H(X)−H(X|Y )

∴ I(X;Y ) = H(X)−H(X|Y ). (2.3.2)
By symmetry, we can write the equation 2.3.2 as follows,

I(X;Y ) = H(Y )−H(Y |X). (2.3.3)

Also, the self mutual information can defined as

I(X;X) = H(X)−H(X|X) = H(X). (2.3.4)

We recall equation 2.2.16 we have

H(Y |X) = H(X,Y )−H(X). (2.3.5)

Substituting equation 2.3.5 in 2.3.3 yields

I(X;Y ) = H(X) +H(Y )−H(X,Y ). (2.3.6)
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2.4 Channel Capacity

In a given communication channel the measure of how much information can be transmitted through
the channel under given constraints is called channel capacity. Suppose a discrete channel of commu-
nication has an input alphabet X and output alphabet Y. In this channel, the probability of observing
the output y given the input x is defined by p(y|x). If the probability distribution of the output depends
only on the input at that time and is conditionally independent of previous channel inputs or outputs,
then the channel is said to be memoryless discrete channel (Cover and Thomas, 2012).

2.4.1 Definition. Information channel capacity is the maximum mutual information taken over all
possible input distributions p(x)

C = max
p(x)

I(X;Y ). (2.4.1)

2.4.2 Properties of Channel Capacity. Channel capacity has got various properties as discussed here
below (Cover and Thomas, 2012);

1. C ≥ 0 since I(X;Y ) ≥ 0

2. C ≤ log2 |X | since C = max I(X;Y ) ≤ max H(X) = log2 |X |

3. C ≤ log2 |Y| since C = max I(X;Y ) ≤ max H(Y ) = log2 |Y|

Channel capacity exists in various forms. Examples of which are;

1. noiseless binary channel,

2. noisy channel with non-overlapping outputs,

3. binary symmetric channel,

4. binary erasure channel.

We discuss briefly the above examples of channel capacity in the following section.

2.4.3 Noiseless Binary Channel. Noiseless binary channel is the one whose binary input is reproduced
exactly at the output. Example if the input is 1 or 0 the output is also 1 or 0 respectively. Therefore,
any transmitted bit is received without error.

2.4.4 Noisy Channel with Non-overlapping Outputs. Noisy channel with non-overlapping outputs
is the one with two possible outputs corresponding to each of the two inputs. For example, in a channel
with input alphabet X which takes two values {0, 2} and the output alphabet Y that is either the input
value (e.g. 0) recovered without error or the input value plus one (e.g. 0 + 1 = 1) due to error(noisy)
in the transmission channel, will contain the input values {0, 2} and the output {0, 1, 2, 3}.

2.4.5 Binary Symmetric Channel. This is the kind of channel whose outputs are complemented with
small probability p. Example, a channel in which, when error occurs, the input 0 changes to output 1
and the input 1 changes to output 0.

2.4.6 Binary Erasure Channel. Is a kind of channel in which the bits are lost rather than being changed
as in case of the binary symmetric channel. Example, a channel in which some fraction of data α is
being lost in the output.

Using one or more types of the information channels we have discussed in this section various DNA
storage architectures can be constructed. In the following section we discuss into details the fundamental
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structure of the DNA storage device and show its construction using the types of channel we have
discussed so far.

2.5 DNA Storage Device Architecture

2.5.1 Fundamental Structure of DNA. DNA is a molecule that carries the genetic instructions
necessary for growth, development, functioning and reproduction of all living organisms(Wikipedia, a).
DNA consists of four nitrogenous bases that are basically being divided into two main groups the purines
and the pyrimidines. The purines consist of the Guanine (G) and Adenine (A) whereas the pyrimidines
consist of Thymine (T) and Cytosine (C). These bases pair up with each other to form units called
base pairs. A pairs with T and G pairs with C. The bases are also attached to sugar and phosphate
molecules. The base pair, sugar molecule and the phosphate molecule make a nucleotide. Nucleotides
form two long strands like spiral, that form a double helix structure(Genetic Home Reference). Figure
2.1 shows the fundamental structure of DNA together with the base pairing mechanism.

A short sequence of nucleotide usually 10 to 30 nucleotides forms an oligonucleotide (oligo). Oligonu-
cleotides are commonly made in the laboratory by solid-phase chemical synthesis and they are vital for
artificial genes synthesis, polymerase chain reaction (PCR) and DNA sequencing. Oligonucleotides have
a wide range of applications in genetic testing, research, forensics and DNA storage devices(Wikipedia,
b).

2.5.2 DNA Storage Device. The base-pairing mechanism gives DNA the ability to carry information
by means of the linear sequence of its nucleotides. Each nucleotide is said to write a biological message
in linear form (Saxena et al., 2013). The bases in the nucleotide can be converted in digital code of 1’s
and 0’s and make a storage device that can be used to store data that can be read by modern computer.
The DNA storage system is made up of a DNA synthesizer, a storage container and a DNA sequencer
as shown in the Figure 2.2. The DNA synthesizer is used to encode data to be stored in DNA. The
storage container has compartments in which pools of DNA that map to a volume are stored and the
DNA sequencer reads the DNA sequences and makes a conversion into a digital data (Bornholt et al.,
2016).

Basically the DNA storage device is can be regarded as a communication channel that transmit infor-
mation by synthesis of DNA oligos and receive the transmitted information by sequencing the oligos and
decoding the sequencing data. Erlich and Zielinski (2017) describes an example of the DNA storage
device that behaves as a constrained channel concatenated to an erasure channel as shown in the Figure
2.3. Number of experimental factors including the DNA synthesis imperfection, degradation of DNA
molecule over time, stutter noise2 and PCR dropout make the channel prone to errors and noisy (Erlich
and Zielinski, 2017). Currently, various works are focused on how to achieve an error free DNA storage
device that can store as maximum information as possible.

2.5.3 Net Information Density of DNA Storage Device . The amount of information that can be
recovered(transmitted without error) per nucleotide is called net information density. It is also called
the information capacity per nucleotide. In the DNA storage devices, it is crucial to quantify the net
information density of the device so as we can tell the capabilities of our communication channel (Erlich
and Zielinski, 2017). The net information density is calculated using the following formula

Cnt = C/l (2.5.1)
2Stutter noise is the kind of error that arise during PCR amplification and lead to addition or deletion of copies of the

repeated unit in observed sequencing reads (Gymrek, 2016)
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Figure 2.1: Fundamental structure of DNA (Tutorpace).

Figure 2.2: Components of DNA storage system (Bornholt et al., 2016).

Figure 2.3: The DNA storage device transmission channel(Erlich and Zielinski, 2017).
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Whereby
Cnt = Net information density
C = Channel capacity
l = length of the nucleotide

(2.5.2)

We will use the equation 2.5.2 to calculate the the net information density of various channel of DNA
storage device in the next chapter. The inputs and the outputs of the channel of the DNA storage
device are discrete entities. Therefore, in all of this work our estimation of the value of Cnt will base
on discrete random variables of the inputs and outputs.



3. Results and Discussion
We use the developed tools in Chapter 2 to quantify the amount of information that can be stored
in DNA storage devices. Church et al. (2012) achieved an error free channel using high throughput
sequencing methods. On other hand, other works(Goldman et al., 2013; Grass et al., 2015; Erlich and
Zielinski, 2017) have used different schemes and their results differ according to the schemes they have
used and the constraints under consideration. Our objective is to estimate theoretically the amount of
information that can be transmitted in the DNA storage channel with minimum error. We apply the
mutual information theory in two kind of DNA storage device i.e. one with four bases discovered by
Francis Crick in the year 1954 and the synthesized six bases DNA. In both cases, we consider the DNA
storage device as a communication channel described in the previous chapter(Chapter 2).

3.1 Theoretical Capacity Quantification of DNA Storage Device

A theoretical quantification of the capacity of DNA storage device can be done by analysing the mutual
information of the channel input and output. In this section we apply this approach in two types of
DNA storage device i.e. the one with four bases and the one with six bases separately.

3.1.1 Four Alphabet DNA Device. The DNA four letters storage device uses the four bases of
the DNA molecule to store its information.The oligonucleotides are used to encode and decode data
and hence makes a storage device. Encoding and decoding processes make a communication channel
similar to the one described in chapter 2. This communication channel is prone to random errors and
consequently the channel information capacity is reduced. We use the information theoretical approach
to estimate the amount of information that can be transmitted without/ with minimum error. We then
compare our theoretical results with other related works.

Coding Capacity of Error Free Channel. We consider the channel whose input X and output Y can
take (A,T,G,C). In this particular case A and G are encoded as A which is expressed in binary as 00
while T and C are encoded as T which is expressed in binary as 01. The channel input X transmit A
and T and since it is error free channel, A and T are received perfectly in the output Y as shown in the
Figure 3.1

Let
p(X = 0) = 1

2
p(X = 1) = 1

2

Figure 3.1: Error free (noiseless) 4 alphabet DNA communication channel.

12
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Y

X
A T

A 1 0
T 0 1

Table 3.1: Joint probability distribution

We calculate the entropy H(X) using the equation 2.2.15

H(1
2 ,

1
2) = 1bit

The joint distribution for this channel is shown in the Table 3.1. From this distribution we calculate
H(X|Y ) as follows

H(X|Y ) =
∑

i=A,T

p(Y = i)H(X|Y = i),

= p(Y = A)H(X|Y = A) + p(Y = T )H(X|Y = T ),
= −log21− 0log20− 0log20− log21,
= 0 bit,

∴ H(X|Y ) = 0 bit.

C = max
p(x)

I(X;Y ).

I(X;Y ) = H(X)−H(X|Y ),
= 1bit.

Thus,
C = 1bit

We can obtain similar result as above using equation 2.2.10
C = max

p(x)
I(X;Y )

= max
p(x)

H(X)

= log|AX |
= log 2
= 1bit

Net Information Density of Error Free Channel. We let δv be the probability that the valid sequence
is reduced during the encoding process. We suppose that, the encoded sequence is valid and is perfectly
received with the probability of 1−δv hence the H(X|Y ) = δvH(X)(Erlich and Zielinski, 2017). Recall

Cnt = C/l,

= H(X)−H(X|Y )
l

,

= H(X)− δvH(X)
l

,

= (1− δv) log2|AX |
l

.
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But,
b = log2|AX |

l
.

Therefore, when a valid sequence is transmitted perfectly without considering the dropouts rate3 the
net information density becomes;

Cnt = (1− δv)b. (3.1.1)

We choose a realistic value(Erlich and Zielinski, 2017) of δv = 0.005 and solve for equation 3.1.1 we
get

Cnt = (1− 0.005) = 0.995 bits/nucleotide.

Thus, the net information density of error free channel is approximately equal to 1 bits/nucleotide.
Church and others (Church et al., 2012), experimented with error free channel using the coding capacity
b = 1 bits/nucleotide were able to encode 659 kilobytes using oligos of length 115nt with the index
length of 19bits and found out that the net information density = 0.83 bits/nucleotide. In their work,
Church and others(Church et al., 2012), did not mention the value of δv they used even though their net
information density is also approximately equal to 1 bits/nucleotide similar to what we have obtained in
our theoretical approximation.

Coding Capacity of Non- Error Free Channel. In non-error free channel we consider a different
scheme that will maximize the net information density of the channel. Consider the channel whose
input X and output Y can take (A,T,G,C). We restrict ourself to the mutation that occurs only within
the same types of the base pairs and not otherwise. In other words, we neglect the mutations that may
cause transition from one type of base to another by assuming that they have small chance to occur. To
maximize the coding capacity we need to maximize H(X) and minimize H(X|Y ). H(X) is maximized
with uniform distribution of p(xi) as proved in section 2.2 of chapter 2 above. We let

p(X = A) = p(X = T ) = p(X = G) = p(X = C) = 1
4

We compute the entropy using equation 2.2.1 and we obtain

H(X) =
∑

i=A,T,G,C

p(xi) log2
1

p(xi)

H(X) = 2 bits

We generate a joint probability distribution that will minimize as much as possible the value of H(X|Y )
but it should not be equal zero because in practise there is a depence of X and Y and due to mutation,
there will be some changes of bases in the output. In this case we have employed the methods used by
Rivas (2005) to generate the joint probability distribution in table 3.2.

We calculate H(X|Y ) as follows

H(X|Y ) =
∑

i=A,T,G,C

p(Y = i)H(X|Y = i)

= p(Y = A)H(X|Y = A) + p(Y = T )H(X|Y = T ) + p(Y = G)H(X|Y = G)
+ p(Y = C)H(X|Y = C)
= 0.507(0.07988) + 0.159(0.20160) + 0.184(0.15110) + 0.150(0.37824)
= 0.156bits

3Dropout rate is the probability of the oligo dropouts during decoding process (Erlich and Zielinski, 2017).
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Y

X
A T G C

A 0.502 0.005 0.000 0.000
T 0.005 0.154 0.000 0.000
G 0.000 0.000 0.180 0.004
C 0.000 0.000 0.011 0.139

Table 3.2: Joint probability distribution

From
C = max

p(x)
I(X;Y )

Substituting 2.3.2 in the above equation we have

C = (2− 0.156)bits = 1.844bits.

Net Information Density of Non-Error Free Channel. We use equation 3.1.1 to calculate the net
information density with δv = 0.005. But since our channel is non-error free the capacity per nucleotide
is reduced directly proportional to the dropout rate. In most storage architectures the value of δ has
been found to be 0.5% (Erlich and Zielinski, 2017). Hence the net information density will be

Cnt = (1− 0.005)21.844 bits per nucleotide
= 1.83 bits per nucleotide.

Therefore the net information density, Cnt = 1.83 bits per nucleotide. We will compare these results
with other related work in the next section.

To achieve this results, we have used a reasonable joint probability distribution that maximizes H(X)
and minimize as much as possible the H(X|Y ). One can obtain different results if he is using another
probability distribution. Our results are reasonable due to the fact that H(X) is maximize if and only
if the distribution is uniform as we have proved in Chapter 2, and the observed transition matrices used
in most model give A a higher frequency compared to other bases which result to the similar pattern as
the one we have obtained in the joint probability distribution as shown in the Table 3.2.

3.1.2 Six Alphabet DNA Device. In the six alphabet DNA device there are two more bases which makes
the nucleotide to look like (A,T,G,C,X ,Y ). We suppose an input X and Y take (A,T,G,C,X ,Y ).
The goal is to achieve the minimal error or error free channel and to calculate the maximum amount of
information which can be transmitted.

Coding Capacity of Error Free Channel. The encoding process maps A and G to A which can be
expressed in binary as 000, C and T to T expressed as 001 in binary and X and Y to X which is
expressed as 010 in binary. Therefore we construct an error free binary channel as shown in the Figure
whose capacity is calculated as shown below.

p(X = A) = 1
3

p(X = T ) = 1
3

p(X = X ) = 1
3 .
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Figure 3.2: Error free (noiseless) 6- alphabet DNA communication channel.

Y

X
A T X

A 1 0 0
T 0 1 0
X 0 0 1

Table 3.3: Joint probability distribution for noiseless 6 alphabet DNA device.

We caclute the entropy H(X) using the equation 2.2.1 we get

H(1
3 ,

1
3 ,

1
3) = 1.58bits.

We calculate the conditional entropy H(X|Y ) using the joint probability distribution shown in the Table
3.3.

H(X|Y ) =
∑

i=A,T,X

p(Y = i)H(X|Y = i)

= p(Y = A)H(X|Y = A) + p(Y = T )H(X|Y = T ) + p(Y = X )H(X|Y = X )
= 0 bit

∴ H(X|Y ) = 0 bit.

The information channel capacity becomes

C = max
p(x)

I(X;Y )

= max
p(x)

H(X) since H(X|Y ) = 0

= 1.58bits.

Alternatively;
C = max

p(x)
I(X;Y )

= max
p(x)

H(X)

= log2|AX |
= log2 3
= 1.58bits.
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Thus, the coding capacity of this channel b = 1.58bits/nucleotide.

This result, agree with the theory we have discussed in Chapter 2. Using the three examples, we were
able to show that increase in number of states increases the entropy. The value of the coding capacity
obtained here is relatively bigger compared to the one obtained in the similar case (in the previous
section), when four bases of the DNA sequence were used. Therefore, with many states we are able to
achieve maximum coding capacity.

Net Information Density of Error Free Channel. The channel is error free and therefore the encoded
sequence is perfectly received with the probability 1− δv without dropout rate. We use the same value
of δv as described above. The net information density is therefore estimated to be;

Cnt = (1− 0.005)1.58 bits per nucleotide
= 1.57 bits per nucleotide

Thus, the error free channel with six DNA bases has the net information density Cnt = 1.57 bits per nucleotide.
There is no an experimental result to compare with. But with the same logic and method we have used
in the four alphabets DNA device in section 3.1.1, we conclude that the value we have approximated is
reasonable value as the one we have approximated using the four alphabets DNA device.

The results show that, we have achieved the large net information density than in the previous case above
when we used four bases DNA storage device. This implies that, we can encode large amount of data
in the DNA storage device if the six bases are used instead of the four bases. This gives an important
future application of the recently discovered synthetic DNA with six bases i.e. (A,T,G,C,X ,Y )

Coding Capacity of Non- Error Free Channel. As we have discussed in the four alphabets DNA
device, the objective is to maximize H(X) and minimize as much as possible H(X|Y ) so as to increase
the coding capacity. We maximize the H(X) by ensuring the maximum distribution of p(xi) in the
input alphabet X

p(X = A) = p(X = T ) = p(X = G) = p(X = C) = p(X = X ) = p(X = Y ) = 1
6 .

Hence,
H(X) = log2(6) = 2.58bits.

And we minimize H(X|Y ) with the joint probability distribution shown in the Table 3.4. The probabil-
ities have been obtained using the method discussed by Rivas (2005).

Y

X
A T G C X Y

A 0.002 0.005 0.000 0.000 0.000 0.000
T 0.005 0.134 0.000 0.000 0.000 0.000
G 0.000 0.000 0.162 0.004 0.000 0.000
C 0.000 0.000 0.011 0.139 0.000 0.000
X 0.000 0.000 0.000 0.000 0.187 0.003
Y 0.000 0.000 0.000 0.000 0.001 0.149

Table 3.4: Joint probability distribution
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H(X|Y ) =
∑

i=A,T,G,C,X ,Y

p(Y = i)H(X|Y = i)

= p(Y = A)H(X|Y = A) + p(Y = T )H(X|Y = T ) + p(Y = G)H(X|Y = G)
+ p(Y = C)H(X|Y = C) + p(Y = X )H(X|Y = X ) + p(Y = Y )H(X|Y = Y )
= 0.205(0.16543) + 0.139(0.2235) + 0.166(0.16386) + 0.150(0.37824)
+ 0.19(0.11709) + 0.150(0.057778)
= 0.189bits

Recall
C = max

p(x)
I(X;Y )

Thus
C = (2.58− 0.189) = 2.39 bits/nt

Therefore, the coding capacity of the six alphabets DNA channel C = 2.39 bits/nt.

Net Information Density of Non-Error Free Channel. We use the δv = 0.005 and δ = 0.5% in
equation 3.1.1 we get

Cnt = (1− 0.005)22.58 bits per nucleotide
= 2.38 bits per nucleotide.

Therefore, under given constraints we can achieve to make a six alphabets device with the net information
density of 2.38 bits per nucleotide.

Similarly, we have obtained the values of net information density and coding capacity larger than in the
four bases DNA storage device. This confirm that, the coding capacity and the net information density
depends also in the number of independent bases in our storage device.

3.2 Related Works

Experimental results differ depending on various schemes used during the encoding and decoding pro-
cesses(Goldman et al., 2013; Grass et al., 2015; Erlich and Zielinski, 2017). Despite the fact that
different works have reported different results of the DNA storage device capacity, but all their results
depends on common factors such as the length of oligos used, the size of the homopolymers, the index
length and the dropout rates. Erlich and Zielinski (2017) used the DNA storage architecture that makes
use of 150nt oligos, with the cost effective reduction rate δv = 7% and the dropout rate δ of 5% . Their
scheme provides best results in terms of retrieved data and storage capacity compared to the pre-existing
ones. The scheme screens potential oligos to obtain a maximum coding capacity of b = 1.98bit/nt.
Mathematical approximation of b provided in their work is given below;

b ≈ log2n−
3log2e

4m+1 + log2[2Φ(2
√
lcgc)− 1]
l

. (3.2.1)

Whereby;

l = length of the oligo.
n = number of independent events observed(number of bases in a sequence).
Φ = The cumulative function of standard normal distribution.
cgc = Maximum deviation of GC content from 0.5.
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The derivation of the above approximation is given in Erlich and Zielinski (2017). We focus on the
practical application of the approximation above to approximate the coding capacity.

Coding capacity in four alphabet channel. Erlich and Zielinski (2017) used m = 3, l = 150nt and a
conservative value of cgc = 0.05 followed some other previous works which were proved experimentally
to be reasonable. For this choice we found out the value of b by substituting the given parameters in
the equation 3.2.1. The value of n in this case is 4 because we have four types of bases in our sequence.

b = 2− 0.017− 0.002 = 1.98 bits/nt

Net information density of four alphabet channel. Using the scheme suggested by Erlich and
Zielinski (2017) which has been proven to be experimentally cost effective and reasonable, we calculate
the net information density of the four alphabet channel. Net information density, given by equation
3.1.1, is found to be

Cnt = (1− 0.07)1.98 = 1.841 bits/nt.

Putting into consideration the dropout rate of 5% during decoding we found the net information density
to be

Cnt = (1− 0.07)(1− 0.005)1.98 = 1.832 bits/nt.

Hence, with a reasonable scheme of four alphabet DNA storage device, the net information density
becomes 1.832 bits/nt. We found the same value in the previous section where we used a different
approach based on mutual information theory to quantify the the net information density in the four
alphabets channel. We therefore conclude that, our results agree with the estimate in the scheme used
by Erlich and Zielinski (2017).

Coding capacity in six alphabet channel. Unfortunately, there is no an experimental scheme yet that
has used the six alphabets channel to quantify the storage capacity of the DNA device. Intuitively, we
use the similar approach as the one we have used in the four alphabets DNA device to calculate the
coding capacity and the net information density with the same parameters. We substitute the values
of the parameters given in equation 3.2.1 but in this case we use n = 6 because we are using a six
alphabets DNA storage device.

b = log2 (6)− 0.017 + 0.002 = 2.57 bits/nt.

Thus, we can achieve the coding capacity of 2.57 bits/nt with six alphabets DNA device.

Net information density of six alphabet channel. Similary, we calculate the net information density
using the equation 3.1.1

Cnt = (1− 0.07)2.57 = 2.39 bits/nt.

Considering the dropout rate in the channel we get

Cnt = (1− 0.07)(1− 0.005)2.57 = 2.38 bits/nt.

Hence, with the same scheme used in previous section but with six alphabets DNA storage device, the
net information density becomes 2.38 bits/nt. The net information density obtained here, is the same
value we have obtained in our theoretical estimation. We therefore conclude that, the two approximation
we have shown give same value of net information density.
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3.3 Summary

We summarize the results in the tables below. The table 3.5 represents the values obtained in error free
channel and table 3.6 for non-error free channel.

Architecture Coding capacity b Reduction probability δv Net information density Cnt

Current work Church et al. Current work Church et al. Current work Church et al.
4 alphabet 1 bit/nt 1 bit/nt 0.005 - 0.995 bits/nt 0.83 bits/nt

Table 3.5: Error free DNA-storage device

Architecture Coding Capacity values b Reduction probability δv Net information density Cnt

Current work Erlich et al. Current work Erlich et al. Current work Erlich et al.
4 Alphabet 1.844 bits/nt 1.98 bits/nt 0.005 0.07 1.83 bits/nt 1.83 bits/nt
6 Alphabet 2.39 bits/nt 2.39 bits/nt 0.005 0.005 2.38 bits/nt 2.38 bits/nt

Table 3.6: Non- error free DNA-storage device



4. Conclusions and Recommendations
DNA storage devices have proven so far to be better devices that offer many advantages compared to the
available traditional storage devices in the market. The technology required in encoding and decoding
data in DNA devices, is significantly expensive, sophisticated and prone to error. The development
of DNA storage devices, requires design of complicated experimental schemes which consume a lot of
time and difficult to handle. However, DNA storage devices, is a promising solution in dealing with the
enormous growth of data.

We have developed a theoretical tool using the information theory that allows us to formulate the DNA
storage device as an information transmission channel that maximize as much as possible its capacity
and minimize as much as possible the amount of errors in the channel. We have tested the approach
we have developed with other related works and confirm an excellent match.

We have found that, four bases DNA storage device gives a storage architecture with lesser capacity
than the the modern synthetic DNA which has six bases i.e. (A,T,G,C,X ,Y ). The the six bases
DNA architecture offers the storage capacity that is 23.11% higher than the . We suggest that, future
experimental work may concentrate on using the six bases DNA architecture instead of the four bases
architecture because it offers higher capacity than the four bases architecture.
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