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Abstract

Streptococcus pneumoniae is a bacterium commonly found in the path from the noses to the throats of
young children. Pneumococcal serotypes can cause a variety of diseases such as meningitis. One major
problem when attempting to introduce appropriate vaccines is that the sequence types (genetic material
found in the serotypes) which are associated with the disease can be present in a number of different
serotypes. The aim of the project is to examine a system of ordinary differential equations that has been
proposed as a simple model of the case when a sequence type is able to manifest itself in one vaccine
serotype and one non-vaccine serotype. The analytical results are carried out where equilibrium solutions,
effective reproductive number, local stability analysis and global stability analysis are determined. To
confirm the analytical results, simulations with real-life parameter values are performed.
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1. Introduction

Streptococcus pneumoniae is a bacterium commonly found in the nasopharynx (a space in the upper
throat that lies behind the nose) of young children. It was discovered simultaneously and independently
by an American physician George Miller Sternberg and a French chemist Louis Pasteur in 1881 (Lamb
et al., 2011). Pneumococcus can cause a number of different infections such as ear infection, sinusitis
and pneumonia, and diseases like meningitis and septicaemia. It is spread through direct contact with
infected individuals or via coughs and sneezes. Worldwide, there are approximately one and half million
deaths each year due to the pneumococcal disease, including 700, 000 to one million children under
the age of 5 years (Greenhalgh et al., 2011). Pneumococcal carriage rate and transmission within a
community depend on several factors such as frequent close contact with other individuals, particularly
young children in environments such as child care centres, and high incidence of viral respiratory tract
infections (Lamb, 2009).

Pneumococcal serotypes are defined according to the structure of the polysaccharide capsule which
encases the bacterium. The capsule protects the bacterium from the body immunity and enables it
to cause infection and disease (Greenhalgh et al., 2012). The level of virulence of the bacterium will
depend on the capsule meaning that some serotypes will be more virulent than others.

The serotypes are classified in a serogroup according to their antigens. These are the substances that
can cause the immune body to produce antibodies against them. At least 46 serogroups containing
more than 90 distinct pneumococcal serotypes are known but the majority of pneumococcal disease is
caused by 20− 30 serotypes (Greenhalgh et al., 2012).

According to the DNA structure, the streptococcus pneumoniae bacterium may also be categorised by
multi-locus sequence types MLSTs (Lamb, 2009). There are hundreds different pneumococcal MLSTs
and some of these can be associated with more than one serotype (Lamb et al., 2011). The pneumococcal
sequence types are defined according to the 7 house-keeping genes identified within genetic material.
These genes are relatively stable over time and are used to determine the sequence type (Lamb, 2009).
The serotype classification is based on the outer bacterial coating, whereas the sequence type depends on
the inner genetic material. It has been demonstrated that some sequence types are more associated with
particular serotypes than others. Therefore, there is a correlation between invasive sequence types and
invasive serotypes, with the most invasive sequence types corresponding to the most invasive serotypes
(Greenhalgh et al., 2012).

The first treatments used to combat against pneumococcal infection and disease were antibiotics (Green-
halgh et al., 2012). In order to stop the pneumococcal infection and disease, two kinds of vaccines have
been developed; a 23-valent polysaccharide vaccine which has purified capsular polysaccharide from 23
different pneumococcal serotypes and a 7-valent conjugate vaccine with purified capsular polysaccharide
from 7 different pneumococcal serotypes conjugated to protein. The latter is more effective in preventing
pneumococcal infection amongst children under two years of age (Lamb et al., 2011).

The 23-valent is 60% − 70% effective against the 23 vaccine serotypes which account for 85% − 90%
of the circulating pneumococcal strains. The 7-valent conjugate vaccine is much more effective, but
against only 7 vaccine serotypes. But one advantage of the 7-valent vaccine is that, in preventing
carriage, it has the potential to produce herd immunity in the population (Lamb et al., 2011).

The advantage of pneumococcal conjugate vaccine is to prevent the disease in the risk group (young
children) and the carriage of the serotypes which are causing the invasive disease. In preventing carriage,
the 7-valent pneumococcal conjugate vaccine allows herd immunity to occur in the population. This
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occurs when the vaccinated group brings protection to the whole population. Since the conjugate
vaccine reduces the carriage of the 7-valent vaccine type serotypes in children less than two years of
old, then the transmission of these serotypes to adult population will be prevented (Lamb, 2009).

The key problem that we are interested in is that the sequence types are able to manifest themselves in
more than one serotype. This is a problem if an invasive sequence type is associated with non-vaccine
type serotypes. So, this could result in a loss in effectiveness of the vaccine.

The study done in Scotland was concerned with serotype 14 which was potentially characterised by the
increasing of invasive disease and was found to be associated with ten different sequence types. Six of
these sequence types can manifest themselves in many different serotypes including five serotypes that
are not included in the conjugate vaccine (Lamb et al., 2011).

In (Lamb et al., 2011) and (Greenhalgh et al., 2012), mathematical models have been developed to
investigate this problem of sequence types being associated with multiple serotypes, some of which are
not included in the vaccine. In the simplest case (Lamb et al., 2011), a single sequence type which is
associated with a vaccine-type serotype and a non-vaccine type serotype is considered. The underlying
host population is then subdivided into four classes, namely unvaccinated and vaccinated susceptibles,
unvaccinated carriers, and, finally, individuals, who despite having been vaccinated, carry the disease
through the manifestation of the sequence type in the non-vaccine serotype. The transmission of
the disease between the different classes is then represented by a system of four ordinary differential
equations. In the more complicated model examined in (Greenhalgh et al., 2012), the case of two
sequence types and two serotypes is considered, resulting in a model involving a system of six differential
equations.

In the population of the simple model, two serotypes are considered where the infection with one
serotype reduces the probability of the infection with another serotype. The vaccination of an individual
is completely effective against the first serotype and varies the effectiveness against the second. For that
the two serotypes have different carriage transmission coefficients. A constant fraction of the population
is assumed to be vaccinated at birth (Greenhalgh et al., 2011).



2. Mathematical modelling of pneumococcal
carriage and transmission in children

Several mathematical models have been developed to show the problem of sequence types being asso-
ciated with multiple serotypes. This chapter describes the simplest model developed in (Lamb et al.,
2011). It consists of one sequence type associated with two serotypes.

The model considers four compartments of individuals and takes the form of a system of ordinary
differential equations involving the following variables:

X(t): population size of unvaccinated susceptible individuals at time t,

V (t): population size of vaccinated susceptible individuals at time t,

T (t): population size of unvaccinated individuals at time who are carrying the sequence type,

VT (t): population size of vaccinated individuals at time who are carrying the sequence type.

2.1 Model assumptions

In this model, we assume that the proportion f of children who receive the vaccine is constant. The
sequence type can express itself as either serotype 1 (Y1) or serotype 2 (Y2) with proportions pT and
(1−p)T respectively. Vaccinated children are completely protected against serotype 1 but only partially
or not at all against serotype 2 (Lipsitch, 1997). The susceptible children enter the population of
interest at a constant rate L and they leave the population at a per capita rate u. The transmission is
determined by the sequence type not the serotype (Lamb et al., 2011). For that, the unvaccinated and
vaccinated susceptibles are infected at a rate βX(T + VT ) and βV (T + VT ) respectively. The children
who were carrying the sequence type become susceptible again at a rate γ.

2.2 Mathematical model

From the assumptions, we can construct a diagram showing the process of the system; see Figure 2.1.
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Figure 2.1: Flow diagram for the model

The ordinary differential equations (ODEs) that describe the process illustrated in Figure 2.1 are

dX

dt
= L(1− f)− uX − βX(T + VT ) + γT = f1(W )

dT

dt
= βX(T + VT )− (γ + u)T = f2(W )

dV

dt
= Lf − uV − βV (T + VT ) + γVT = f3(W )

dVT
dt

= βV (T + VT )− (γ + u)VT = f4(W ),

(2.2.1)

where W = (X,T, V, VT ).

The time evolution of the population of unvaccinated susceptibles is governed by the first of these
equations. As t increases, the population size X(t) can increase through the introduction of new
unvaccinated children (L(1− f)) and also through unvaccinated carriers returning to the unvaccinated
class (γT ). Equally, X(t) can decrease due to unvaccinated susceptibles becoming unvaccinated carriers
through contact with either unvaccinated carriers (−βXT ) or vaccinated carriers (−βXVT ), and also
due to the natural migration of individuals from this class (−uX).

However, the second equation is representing the time evolution of the population of unvaccinated car-
rying sequence type which manifests itself as two serotypes (Y1 and Y2). The population size T (t) can
increase due to unvaccinated susceptibles becoming infected by unvaccinated carriers (βXT ) or vacci-
nated carriers (βXVT ). Similarly, the population can decrease through the unvaccinated carriers coming
back to the unvaccinated susceptibles (−γT ) and also through the natural migration of individuals from
this compartment (−uT ).
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If we let the total population size at time t be represented by N(t), so that N(t) = X(t) + T (t) +
V (t) + VT (t), then, on adding the four equations in (2.2.1), we find that

dN

dt
= L− uN. (2.2.2)

The equation (2.2.2) will play a useful role in the analysis that follows.



3. Model analysis

In this chapter, we identify the equilibrium solutions, or steady states, of the system (2.2.1). In addition,
the effective reproductive number will be discussed to show whether a disease spreads or dies out. Then
a local stability analysis is carried out to determine whether small perturbations from a steady state
decay to zero or grow. And again, we shall perform a global stability analysis aimed at finding the
set of initial states from which solutions will converge to a given steady state. Finally, with specific
initial conditions and realistic values of parameters, simulations will be done to emphasize the analytical
results.

3.1 Equilibrium solutions

We need to solve the system of algebraic equations fi(Ŵ ) = 0, i = 1, 2, 3, 4, where, for each i, fi is
the function appearing in the system (2.2.1). Thus, at equilibrium, (2.2.1) becomes

L(1− f)− uX̂ − βX̂(T̂ + V̂T ) + γT̂ = 0

βX̂(T̂ + V̂T )− (γ + u)T̂ = 0

Lf − uV̂ − βV̂ (T̂ + V̂T ) + γV̂T = 0

βV̂ (T̂ + V̂T )− (γ + u)V̂T = 0.

(3.1.1)

By adding the first two equations of (3.1.1), we get X̂ + T̂ =
L

u
(1− f). Similarly, combining the last

two equations yields V̂ + V̂T =
L

u
f .

From (2.2.2), the total population N(t) satisfies the equation
dN̂

dt
= L− uN .

When f(N) = L − uN > 0 then
dN

dt
> 0 and this implies that N(t) is increasing. But if f(N) < 0

then
dN

dt
< 0, and so, N(t) is decreasing; see Figure 3.1. Consequently, N(t) −→ L

u
as t −→ ∞. At

equilibrium, the total number of hosts in the population is
L

u
.

6



Section 3.1. Equilibrium solutions Page 7

N(t)0

dN

dt

L

L

u

Figure 3.1: Phase-line plot diagram

Substituting X̂ =
L

u
(1 − f) − T̂ into the second equation of (3.1.1) and V̂ =

L

u
f − V̂T into the last

equation of (3.1.1), leads to

β

(
L

u
(1− f)− T̂

)
(T̂ + V̂T )− (γ + u)T̂ = 0 (3.1.2)

and

β

(
L

u
f − V̂T

)
(T̂ + V̂T )− (γ + u)V̂T = 0. (3.1.3)

Adding (3.1.2) and (3.1.3), we obtain

(T̂ + V̂T )

[
β

(
L

u
− (T̂ + V̂T )

)
− (γ + u)

]
= 0,

which means that either (T̂+V̂T ) = 0 or β

(
L

u
− (T̂ + V̂T )

)
−(γ+u) = 0. Since we are only interested

in physically meaningful equilibria, if (T̂ + V̂T ) = 0 then we must have T̂ = 0, V̂T = 0 and hence,

X̂ =
L

u
(1− f) and V̂ =

L

u
f .

Hence, the carriage-free equilibrium (CFE) solution is given by:(
X̂, T̂ , V̂ , V̂T

)
=

(
L

u
(1− f), 0,

L

u
f, 0

)
.

It follows that at CFE, there are no children carrying the sequence type. The total population at this
equilibrium consists only of unvaccinated and vaccinated susceptibles.

If T̂ + V̂T 6= 0, then β

(
L

u
− (T̂ + V̂T )

)
− (γ + u) = 0, and so

T̂ + V̂T =
L

u
− γ + u

β
. (3.1.4)
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Dividing the second and last equations of (3.1.1) and using X̂ + T̂ =
L

u
(1− f), V̂ + V̂T =

L

u
f gives

T̂

V̂T
=
X̂

V̂
=

L

u
(1− f)− T̂
L

u
f − V̂T

.

It follows that

T̂

(
L

u
f − V̂T

)
= V̂T

(
L

u
(1− f)− T̂

)
and then

T̂ f = V̂T (1− f).

Thus V̂T = (T̂ + V̂T )f and fT̂ = V̂T (1− f). Since T̂ + V̂T =
L

u
− γ + u

β
, then V̂T = f

(
L

u
− γ + u

β

)
and T̂ = (1− f)

(
L

u
− γ + u

β

)
.

Again, It has been shown that X̂ + T̂ = (1 − f)
L

u
and V̂ + V̂T = f

L

u
. Then X̂ = (1 − f)

L

u
− (1 −

f)

(
L

u
− γ + u

β

)
= (1− f)

γ + u

β
and V̂ = f

L

u
− f

(
L

u
− γ + u

β

)
= f

γ + u

β
.

Therefore, the carriage equilibrium solution (CE) is(
X̂, T̂ , V̂ , V̂T

)
=

(
(1− f)

γ + u

β
, (1− f)

(
L

u
− γ + u

β

)
, f
γ + u

β
, f

(
L

u
− γ + u

β

))
.

The CE will have biological meaning if
L

u
≥ γ + u

β
and this is equivalent to

Lβ

u(γ + u)
≥ 1. So, the

basic reproductive number which is a number of secondary infections caused by a single primary infection

(Lamb, 2014) is R =
Lβ

u(γ + u)
.

Therefore, if R > 1, both the CFE and CE exist but if R ≤ 1, there is only the CFE.

In addition, if there is no vaccination in the population (f = 0), at the CFE all children

(
L

u

)
will

be found only in the unvaccinated susceptible compartment (X). At the CE,
γ + u

β
children will be

found in the unvaccinated susceptible compartment X and
L

u
− γ + u

β
children are in the unvaccinated

carrying compartment (T ).

However, if all children are vaccinated (f = 1), at CFE, all children are in the vaccinated susceptible

compartment (V ) and at CE,
γ + u

β
children are in the vaccinated susceptible compartment (V ) and

L

u
− γ + u

β
children are in the vaccinated carrying compartment (VT ).
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At CE, the number of children carrying serotypes 1 and 2 is given, respectively, by

Ŷ1 = pT̂ = p(1− f)

(
L

u
− γ + u

β

)
,

Ŷ2 = (1− p)T̂ + V̂T

= (1− p)(1− f)

(
L

u
− γ + u

β

)
+ f

(
L

u
− γ + u

β

)
= (1− p(1− f))

(
L

u
− γ + u

β

)
.

3.2 Effective reproductive number (Re)

The effective reproductive number is the expected number of secondary cases caused by a typical infected
individual entering a completely susceptible population at equilibrium (Lamb et al., 2011). It is called
effective because of the vaccine effect that is built into the model.

The average carriage duration of a serotype is
1

γ + u
for both vaccinated and unvaccinated children.

In our case, there are two types of infected individuals, unvaccinated (type 1) and vaccinated (type 2).
Let mij denote the expected number of type i infected individuals caused by a single type j infected
individual entering the CFE during his or her infectious period, where i, j can take values 1 and 2. Thus,
the matrix M = (mij) is given by

M =


βL(1− f)

u(γ + u)

βL(1− f)

u(γ + u)
βLf

u(γ + u)

βLf

u(γ + u)

 .

The characteristic equation of the matrix M is given by∣∣∣∣∣∣∣∣
βL(1− f)

u(γ + u)
− λ βL(1− f)

u(γ + u)
βLf

u(γ + u)

βLf

u(γ + u)
− λ

∣∣∣∣∣∣∣∣ = 0

from which we obtain(
βL(1− f)

u(γ + u)
− λ
)(

βLf

u(γ + u)
− λ

)
−
(
βL(1− f)

u(γ + u)

)(
βLf

u(γ + u)

)
= 0.

Simplifying then leads to

λ2 −
(

βLf

u(γ + u)
+
βL(1− f)

u(γ + u)

)
λ =

(
λ− βL

u(γ + u)

)
λ = 0

and therefore M has eigenvalues

λ1 = 0 and λ2 =
βL

u(γ + u)
.
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The effective reproductive number Re corresponds to the largest eigenvalue and hence Re =
βL

u(γ + u)
,

since
βL

u(γ + u)
> 0. It follows that the basic and effective reproductive numbers are equal. Note that

the effective reproductive number does not depend on the vaccination fraction f because the sequence
type can express itself as serotype 2.

3.3 Local stability analysis

In order to find out what happens to the number of unvaccinated and vaccinated susceptibles and
carriers in the long term, a linear local stability analysis is implemented.

The Jacobian matrix of the model (2.2.1) is given by

J =



∂f1
∂X

∂f1
∂T

∂f1
∂V

∂f1
∂VT

∂f2
∂X

∂f2
∂T

∂f2
∂V

∂f2
∂VT

∂f3
∂X

∂f3
∂T

∂f3
∂V

∂f3
∂VT

∂f4
∂X

∂f4
∂T

∂f4
∂V

∂f4
∂VT


and so

J =


−u− β(T + VT ) γ − βX 0 −βX
β(T + VT ) βX − (γ + u) 0 βX

0 −βV −u− β(T + VT ) γ − βV
0 βV β(T + VT ) βV − (γ + u)

 . (3.3.1)

At the CFE

(
L

u
(1− f), 0,

L

u
f, 0

)
, (3.3.1) becomes

JCFE =



−u γ − βL
u

(1− f) 0 −βL
u

(1− f)

0 β
L

u
(1− f)− (γ + u) 0 β

L

u
(1− f)

0 −βL
u
f −u γ − βL

u
(1− f)

0 β
L

u
f 0 β

L

u
f − (γ + u)


.

The characteristic equation is det(JCFE − λI) = 0. Thus∣∣∣∣∣∣∣∣∣∣∣∣∣

−u− λ γ − βL
u

(1− f) 0 −βL
u

(1− f)

0 β
L

u
(1− f)− (γ + u)− λ 0 β

L

u
(1− f)

0 −βL
u
f −u− λ γ − βL

u
(1− f)

0 β
L

u
f 0 β

L

u
f − (γ + u)− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0
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and, expanding by column 1, we obtain

det(JCFE − λI) = −(u+ λ)

∣∣∣∣∣∣∣∣∣∣
β
L

u
(1− f)− (γ + u)− λ 0 β

L

u
(1− f)

−βL
u
f −u− λ γ − βL

u
(1− f)

β
L

u
f 0 β

L

u
f − (γ + u)− λ

∣∣∣∣∣∣∣∣∣∣

= −(u+ λ)

∣∣∣∣∣∣∣∣∣∣
−(γ + u)− λ 0 β

L

u
(1− f)

−βL
u
f − γ + β

L

u
(1− f) −u− λ γ − βL

u
(1− f)

(γ + u) + λ 0 β
L

u
f − (γ + u)− λ

∣∣∣∣∣∣∣∣∣∣
(where we have applied the column transformation c1 → c1 − c3 in the 3× 3 determinant)

= (u+ λ)2(γ + u+ λ)

(
β
L

u
f − (u+ γ)− λ+ β

L

u
(1− f)

)
= (u+ λ)2(γ + u+ λ)

(
β
L

u
− (u+ γ)− λ

)
.

Consequently, the eigenvalues of JCFE are λ1,2 = −u, λ3 = −(γ + u) and λ4 = β
L

u
− (γ + u). The

eigenvalues λ1,2, and λ3 are clearly negative and λ4 is negative if β
L

u
< (γ + u).

Therefore, the CFE is locally asymptotically stable if Re < 1 and it is unstable if Re > 1.

At the CE

(
(1− f)

γ + u

β
, (1− f)

(
L

u
− γ + u

β

)
, f
γ + u

β
, f

(
L

u
− γ + u

β

))
, (3.3.1) becomes

JCE =



γ − βL
u

γ − (1− f)(γ + u) 0 −(1− f)(γ + u)

β
L

u
− (γ + u) −f(γ + u) 0 (1− f)(γ + u)

0 −f(γ + u)

(
γ − βL

u

)
γ − f(γ + u)

0 f(γ + u) β
L

u
− (γ + u) (f − 1)(γ + u)


. (3.3.2)

Using Sage, the eigenvalues of the matrix (3.3.2) are λ1,2 = −u, λ3 = −βL
u

and λ4 = −βL
u

+ (γ+u).

All these eigenvalues are negative if β
L

u
> (γ+u). Therefore, for Re > 1, the CE is locally asymptotically

stable and it doesn’t exist as a physical equilibrium when Re < 1.

3.4 Global stability analysis

It is known that solutions which start sufficiently close to a locally asymptotically stable equilibrium
converge to the equilibrium as t −→ ∞. But we do not know, quantitatively, what ”sufficiently close”
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means. Consequently, given a set of initial conditions X(0), T (0), V (0), VT (0), we cannot say what
is going to happen to the corresponding unique solution as t −→ ∞. Although we can compute the
distance from this initial state to the equilibrium, how do we know if the distance is small enough?

The aim of the global stability analysis is to improve these results. We want to determine all the
physically meaningful initial states that produce solutions converging to a given equilibrium. This is
done by using the differential inequalities and comparison theorem to compare the solutions of the
system at each moment with solutions of simpler differential equations.

It has been shown that the total population N(t) = X(t) + T (t) + V (t) + VT (t) satisfies the scalar
ODE

dN(t)

dt
= L− uN(t)

and so N(t) −→ L

u
from below as t −→∞ when N(0) <

L

u
, and N(t) −→ L

u
from above as t −→∞

when N(0) >
L

u
; see Figure 3.1.

A key part of the global analysis strategy is to investigate the coupled pair of ODEs that govern the
dynamics of the combined susceptible class X + V and combined carrying class T + VT .

From (2.2.1), the population of the susceptible children to carriage of the sequence type and the carriers
satisfy

d

dt
(X + V ) = L− u(X + V )− β(X + V )(T + VT ) + γ(T + VT ) (3.4.1)

and

d

dt
(T + VT ) = β(X + V )(T + VT )− (γ + u)(T + VT ) (3.4.2)

respectively.

Taking S = X + V and C = T + VT , (3.4.1) and (3.4.2) can be written as

S′ = L− uS − βSC + γC = F (S,C),

C ′ = βSC − (γ + u)C = G(S,C).
(3.4.3)

Let us consider two cases; when Re =
Lβ

u(γ + u)
≤ 1 and when Re =

Lβ

u(γ + u)
> 1.

(i) When Re =
Lβ

u(γ + u)
≤ 1.

To determine equilibrium solutions (S∗, C∗) of the system (3.4.3) we solve F (S∗, C∗) = 0 and
G(S∗, C∗) = 0, obtaining

L− uS∗ − βS∗C∗ + γC∗ = 0

βS∗C∗ − (γ + u)C∗ = 0.
(3.4.4)

Adding both equations of (3.4.4) leads to S∗ + C∗ =
L

u
.
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Taking S∗ =
L

u
− C∗ in the second equation of the system (3.4.4), we get

C∗
(
β
L

u
− (γ + u)− βC∗

)
= 0.

So, C∗ = 0 or C∗ =
L

u
− γ + u

β
.

It follows that

(S∗, C∗) =

(
L

u
, 0

)
or

(
γ + u

β
,
L

u
− γ + u

β

)
.

Since
Lβ

u(γ + u)
≤ 1,

L

u
≤ γ + u

β
and then

L

u
− γ + u

β
≤ 0.

Therefore, when Re ≤ 1, there exists only one physical meaningful equilibrium and this is

(
L

u
, 0

)
.

This could have been deduced from the CFE

(
L

u
(1− f), 0, f

L

u
, 0

)
by taking

L

u
(1−f)+f

L

u
=
L

u
and 0 + 0 = 0.

A local stability analysis can be carried out using the Jacobian matrix
∂F

∂S

∂F

∂C

∂G

∂S

∂G

∂C

 ,

and this shows that the equilibrium solution

(
L

u
, 0

)
is locally asymptotically stable when Re < 1.

We want to verify that S(0) ≥ 0 and C(0) ≥ 0 implies that S(t) ≥ 0 and C(t) ≥ 0 so that the
solutions S(t) and C(t) are biologically meaningful.

Consider what happens on the S and C axes. If C = 0 then we get C ′ = 0 and S′ = L− uS. By
uniqueness of the solutions, the unique solution (S(t), C(t)) of the system of ODEs with initial
conditions (S(0), C(0)) = (S0, 0) is (S(t), 0), where S(t) satisfies S′ = L − uS, S(0) = S0. So,
the S axis is made up entirely of trajectories, and so trajectories starting in the first quadrant
cannot break through the S-axis. This means that C(t) can never be negative.
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S0

C

L

u

Figure 3.2: Phase-line analysis

If S = 0 then S′ = L + γC and C ′ = −(γ + u)C which shows that S(t) increases, and C(t)
decreases, away from C axis. This means that trajectories do not pass through to the second
quadrant; see Figure 3.2.

For the chosen parameter values, L = 0.5, β = 8× 10−4, u = 0.001, γ = 0.8, the phase portraits
of the system (3.4.3) provide some evidence about the long term behaviour of the solutions from
different initial conditions and suggest that global stability results may be possible; see Figure 3.3.

Figure 3.3 confirms that (S(t), C(t)) −→
(
L

u
, 0

)
= (500, 0) when Re < 1 and (S(0), C(0)) is

sufficiently close to (500, 0).
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Figure 3.3: Phase portraits with the case Re < 1

When Re =
Lβ

u(γ + u)
= 1, the local stability analysis fails but the phase portraits again suggest

global stability. For the chosen parameter values , L = 0.5, β = 5× 10−6, u = 0.001, γ = 0.0015,
the system approaches the CFE (500, 0); see Figure 3.4.
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Figure 3.4: Phase portraits with the case Re = 1

(ii) When Re =
Lβ

u(γ + u)
> 1.

In this case, both equilibria are physical but now

(
L

u
, 0

)
is no longer stable; instead

(
γ + u

β
,
L

u
− γ + u

β

)
is locally asymptotically stable.

For the chosen parameter values, L = 0.5, β = 8 × 10−4, u = 0.001, γ = 0.15, Figure 3.5

confirms that (S(t), C(t)) −→
(
γ + u

β
,
L

u
− γ + u

β

)
= (189, 311) when Re > 1 and (S(0), C(0))

is sufficiently close to (189, 311). And it also indicates that most solutions converge to the locally
asymptotically stable equilibrium.
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Figure 3.5: Phase portraits with the case Re > 1

To analyse the global stability, three cases are again considered.

i) Re < 1.

In this case, there is only the CFE. By using differential inequalities and some estimations, we can es-
tablish that the system is approaching the equilibrium solution. This means that (X(t), T (t), V (t), VT (t)) −→(
L

u
(1− f), 0,

L

u
f, 0

)
for any X(0) ≥ 0, T (0) ≥ 0, V (0) ≥ 0, VT (0) ≥ 0.

Now, let us prove that S(0) ≥ 0, C(0) ≥ 0⇒ (S(t), C(t)) −→
(
L

u
, 0

)
as t −→∞.

We can start by showing that C(t) −→ 0 as t −→ ∞. This will involve the use of differential
inequalities together with the following estimates:

(1) Since N(t) −→ L

u
as t −→ ∞ and N(t) = S(t) + C(t), with S(t) ≥ 0, C(t) ≥ 0, given any

ε > 0, ∃t ≥ t0(= t0(ε)) such that

S(t) ≤ N(t) ≤ L

u
+ ε ∀t ≥ t0. (3.4.5)
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(2) Since Re < 1 and γ, u, β > 0, there exists ε > 0 such that

−k0 = (γ + u)(Re − 1) + βε = β
L

u
− (γ + u) + βε < 0. (3.4.6)

We choose ε and t0 = t0(ε) so that both (3.4.5) and (3.4.6) hold.

Then, for t ≥ t0,

1

C(t)

d

dt
C(t) = βS(t)− (γ + u)

≤ β
(
L

u
+ ε

)
− (γ + u)

= β
L

u
− (γ + u) + βε = −k0 < 0,

and so

1

C(t)

d

dt
C(t) ≤ −k0, ∀t ≥ t0. (3.4.7)

Integrating both sides of (3.4.7) gives∫ t

t0

(
1

C(t)

d

dt
C(t)

)
ds ≤

∫ t

t0

−k0ds

ln

(
C(t)

C(t0)

)
≤ −k0(t− t0),

and it follows that, for all t ≥ t0,

C(t) ≤ C(t0) exp(−k0(t− t0)).

Consequently, C(t) −→ 0 as t −→ ∞. Since N(t) = S(t) + C(t) −→ L

u
as t −→ ∞, we deduce

that S(t) −→ L

u
as t −→∞.

Having established the long term behaviour of S(t) and C(t), we now consider the separate com-
ponents X(t), T (t), V (t) and VT (t). Since X,T, V, VT are non-negative and T (t) + VT (t) −→ 0,
it follows immediately that T (t) −→ 0 and VT (t) −→ 0 as t −→∞.

To determine what happens to (X(t), V (t)) as t −→∞, we must consider the first equation of the
system (2.2.1).

Given any ε > 0, there exists t1 = t1(ε) > 0 such that

L(1− f)− uX − ε < dX

dt
< L(1− f)− uX + ε ∀t ≥ t1.

Let X−ε and Xε be the solutions of the initial value problems.

X ′−ε = L(1− f)− uX − ε, X−ε(t1) = X(t1)

X ′ε = L(1− f)− uX + ε, Xε(t1) = X(t1).
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By the comparison theorem (Birkhoff and Rota, 1982), X−ε(t) ≤ X(t) ≤ Xε(t) ∀t ≥ t1. Now

X−ε(t) −→
L(1− f)− ε

u
and Xε(t) −→

L(1− f) + ε

u
as t −→∞.

Hence ∃t2 = t2(ε), t2 > t1, such that

X−ε(t) >
L(1− f)− ε

u
− ε

u
=
L(1− f)− 2ε

u

and

Xε(t) <
L(1− f) + ε

u
+
ε

u
=
L(1− f) + 2ε

u
.

It follows that

L(1− f)− 2ε

u
≤ X(t) ≤ L(1− f) + 2ε

u

and since ε > 0 can be chosen arbitrarily small, we deduce that

X(t) −→ L(1− f)

u
as t −→∞.

Moreover, since X(t) + V (t) −→ L

u
as t −→∞, then

V −→ L

u
− L(1− f)

u
=
Lf

u
as t −→∞.

Therefore, for the epidemic case, since

(X(t), T (t), V (t), VT (t)) −→
(
L

u
(1− f), 0,

L

u
f, 0

)
,

the CFE is globally asymptotically stable .

ii) Re > 1.

It has been shown that in this case, there are both the CFE and the CE. But the CFE is unstable
whilst the CE is locally asymptotically stable. Figure 3.5 shows that the system approaches the

CE

(
(1− f)

γ + u

β
, (1− f)

(
L

u
− γ + u

β

)
, f
γ + u

β
, f

(
L

u
− γ + u

β

))
. Again using differential

inequalities and the comparison theorem, we can show that global stability occurs.

To prove that S(0) ≥ 0, C(0) ≥ 0 ⇒ (S(t), C(t)) −→
(
γ + u

β
,
L

u
− γ + u

β

)
as t −→ ∞, let us

begin by showing that C(t) −→ L

u
− γ + u

β
as t −→∞.

Once again, differential inequalities and some estimations are involved as follows:

Since N(t) −→ L

u
as t −→∞ and N(t) = S(t) +C(t), with S(t) ≥ 0, C(t) ≥ 0, given any ε > 0,

∃t ≥ t0(= t0(ε)) such that

L

u
− ε ≤ N(t) ≤ L

u
+ ε ∀t ≥ t0. (3.4.8)
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Figure 3.5 indicates that as t −→ ∞, C(t) can be either decreasing or increasing to get its value
at the CE. When C(t) is decreasing, then, from (3.4.8), it can be deduced that

1

C(t)

d

dt
C(t) = β(N − C(t))− (γ + u)

≤ β
((

L

u
+ ε

)
− C(t)

)
− (γ + u) = β

(
L

u
+ ε

)
− βC(t)− (γ + u).

Again, when C(t) is increasing, then

1

C(t)

d

dt
C(t) = β(N − C(t))− (γ + u)

≥ β
((

L

u
− ε
)
− C(t)

)
− (γ + u) = β

(
L

u
− ε
)
− βC(t)− (γ + u).

Hence

C(t)

(
β

(
L

u
− ε
)
− βC(t)− (γ + u)

)
≤ dC(t)

dt
≤ C(t)

(
β

(
L

u
+ ε

)
− βC(t)− (γ + u)

)
∀t ≥ t0.

Let C−ε and Cε be solutions of the initial value problems.

C ′−ε =

(
β

(
L

u
− ε
)
− βC(t)− (γ + u)

)
C(t), C−ε(t0) = C(t0)

C ′ε =

(
β

(
L

u
+ ε

)
− βC(t)− (γ + u)

)
C(t), Cε(t0) = C(t0).

Then C−ε(t) ≤ C(t) ≤ Cε(t) ∀t ≥ t0.

Now the equations for C ′−ε and C ′ε are of the form Z ′ = (a− bZ)Z. Two equilibria are Z∗ = 0 and

Z∗ =
a

b
.

Z0

Z ′

a

b

Figure 3.6: Phase-line

Figure 3.6 shows that Z(t) −→ a

b
as t −→∞.
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Applying this to C−ε, Cε, we get

C−ε(t) −→
β

(
L

u
− ε
)
− (γ + u)

β
=
L

u
− γ + u

β
− ε

Cε(t) −→
β

(
L

u
+ ε

)
− (γ + u)

β
=
L

u
− γ + u

β
+ ε.

Hence, ∃t1 = t1(ε) > t0 such that

C−ε(t) >
L

u
− γ + u

β
− 2ε

Cε(t) <
L

u
− γ + u

β
+ 2ε

and so

C(t) −→ L

u
− γ + u

β
as t −→∞.

This means that T (t) + VT (t) −→ L

u
− γ + u

β
as t −→∞.

Since N(t) −→ L

u
, then X(t) + V (t) −→ L

u
−
(
L

u
− γ + u

β

)
.

So, X(t) + V (t) −→ γ + u

β
as t −→∞.

To determine what happens to X(t), T (t), V (t), VT (t), let X(t) = (1−f)X̄(t), T (t) = (1−f)T̄ (t),
V (t) = fV̄ (t) and VT (t) = fV̄T (t).

Hence the first two equations of the system (2.2.1) become

d

dt
X̄(t) = L− uX̄(t)− βX̄(t)(T (t) + VT (t)) + γT̄ (t)

d

dt
T̄ (t) = βX̄(t)(T (t) + VT (t))− (γ + u)T̄ (t)

and adding them leads to

d

dt
(X̄(t) + T̄ (t)) = L− u(X̄(t) + T̄ (t)).

Therefore,

X̄(t) + T̄ (t) −→ L

u
.

From that,

d

dt
T̄ (t) −→ β

(
L

u
− T̄

)(
L

u
− γ + u

β

)
− (γ + u)T̄

= β
L

u

(
L

u
− γ + u

β

)
− βL

u
T̄ .
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Given any ε > 0, ∃t2 = t2(ε) > 0 such that

β
L

u

(
L

u
− γ + u

β

)
− βL

u
T̄ − ε < dT̄

dt
< β

L

u

(
L

u
− γ + u

β

)
− βL

u
T̄ + ε, ∀t ≥ t2.

Let T̄−ε and T̄ε be the solutions of the initial value problems.

T̄ ′−ε = β
L

u

(
L

u
− γ + u

β

)
− βL

u
T̄ − ε, T̄−ε(t2) = T̄ (t2)

T̄ ′ε = β
L

u

(
L

u
− γ + u

β

)
− βL

u
T̄ + ε, T̄ε(t2) = T̄ (t2).

By the comparison theorem, T̄−ε(t) ≤ T̄ (t) ≤ T̄ε(t), ∀t ≥ t2.

Now T̄−ε(t) −→
(
L

u
− γ + u

β

)
− εu

βL
and T̄ε(t) −→

(
L

u
− γ + u

β

)
+
εu

βL
.

Hence ∃t3 = t3(ε), t3 > t2 such that

T̄−ε(t) >

(
L

u
− γ + u

β

)
− 2εu

βL
∀t ≥ t3

and

T̄ε(t) <

(
L

u
− γ + u

β

)
+

2εu

βL
∀t ≥ t3.

This shows that (
L

u
− γ + u

β

)
− 2εu

βL
≤ T̄ (t) ≤

(
L

u
− γ + u

β

)
+

2εu

βL

and since ε > 0 can be chosen arbitrarily small, we deduce that

T̄ (t) −→
(
L

u
− γ + u

β

)
and then

T (t) −→ (1− f)

(
L

u
− γ + u

β

)
as t −→∞.

Since C(t) −→ L

u
− γ + u

β
and VT (t) = C(t)− T (t), then VT (t) −→ C(t)− T (t). This is

VT (t) −→ L

u
− γ + u

β
− (1− f)

(
L

u
− γ + u

β

)
= f

(
L

u
− γ + u

β

)
as t −→∞.

Similarly, since X̄(t) + T̄ (t) −→ L

u
, then X(t) + T (t) −→ (1− f)

L

u
, and

X(t) −→ L

u
(1− f)− (1− f)

(
L

u
− γ + u

β

)
.
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So,

X(t) −→ (1− f)
γ + u

β
as t −→∞.

It has been shown that X(t) + V (t) −→ γ + u

β
as t −→∞, and hence

V (t) −→ γ + u

β
− (1− f)

γ + u

β

= f
γ + u

β
as t −→∞.

Therefore, for the endemic case, since

(X(t), T (t), V (t), VT (t)) −→
(

(1− f)
γ + u

β
, (1− f)

(
L

u
− γ + u

β

)
, f
γ + u

β
, f

(
L

u
− γ + u

β

))
,

the CE is globally asymptotically stable.

iii) Re = 1.

It has been shown that Re = 1 if

L

u
=
γ + u

β
. (3.4.9)

In addition, the Figure 3.4 indicates that the system approaches the equilibrium solution (S∗, C∗) =(
L

u
, 0

)
. Substituting the condition (3.4.9) in the equilibrium, in ii), it follows that

(X(t), T (t), V (t), VT (t)) −→
(
L

u
(1− f), 0,

L

u
f, 0

)
as t −→∞,

and then CFE is globally asymptotically stable even when Re = 1.

Therefore, if Re ≤ 1, the system approaches the CFE and if Re > 1, it approaches the CE.

3.5 Simulations

The aim of this part is to illustrate the analytical results by using real-life parameter values.

In (Lamb et al., 2011), the population of children under 2 years old from Scotland is considered. The
size of this population is N = 150000 and it is assumed to be at equilibrium. The unit of time is one
week. The illustrative parameter values are

u =
1

104
/week, γ = 0.1408/week, β = 1.5041× 10−6/week and f = 0.6.

From these values, the effective reproductive number is

Re =
βL

u(γ + u)
with L = uN = 1442.31

=
1.5041× 10−6 ∗ 1442.31

1
104

(
0.1408 + 1

104

) = 1.5.
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The CFE is(
L

u
(1− f), 0,

L

u
f, 0

)
= (0.4 ∗ 150000, 0, 0.6 ∗ 150000, 0) = (60000, 0, 90000, 0).

The CE is (
(1− f)

γ + u

β
, (1− f)

(
L

u
− γ + u

β

)
, f
γ + u

β
, f

(
L

u
− γ + u

β

))

=

(
0.4 ∗ η, 0.4 ∗ (150000− η) , 0.6 ∗

0.1408 + 1
104

1.5041× 10−6
, 0.6 ∗ (150000− η)

)
, where η =

0.1408 + 1
104

1.5041× 10−6

= (40000, 20000, 60000, 30000).

Taking the initial conditions; X(0) = 149000, T (0) = 1000, V (0) = 0 and VT (0) = 0, Figure 3.7 shows
that only the carriage equilibrium exists when Re > 1.

Figure 3.7: Simulation with the case Re > 1



4. Conclusion

In this work, the simple mathematical model for the carriage and transmission of pneumococcal disease
in a population of children under two years old is considered to understand the concept of sequence
type colonization. The sequence type is able to manifest itself as a vaccine type and a non-vaccine type
serotype.

The analytical results of the model show that there exist two equilibria; CFE and CE. In addition, the
effective reproductive number was determined to investigate the behaviour of the disease. When Re ≤ 1,
there is only the CFE which is globally asymptotically stable and, in the long term, there are no children
carrying the sequence type. At this steady state, all children, in the four compartments (vaccinated
susceptible, unvaccinated susceptible, vaccinated carriers and unvaccinated carriers), are susceptible to
carriage of the sequence type. In addition, regardless of the number of vaccinated and unvaccinated
carriers in the population, the disease will die out in the long term. Contrariwise, when Re > 1 the
disease spreads out and two equilibrium solutions exist; the CE is globally asymptotically stable whereas
the CFE is unstable. If there are no initial carriers of sequence type in the population, there will be again
the vaccinated and unvaccinated susceptible compartments only. But if there are some initial carriers,
the population will be subdivided into the four compartments and the number of carriers approaches
L

u
− γ + u

β
children.

Moreover, since the sequence type plays a role in the spread of disease and it manifests itself as two
serotypes, then the disease will continue to appear in the population as the vaccine prevents only one
serotype.

This work can be extended by considering multiple sequence types that can manifest themselves in more
than one serotype. So, two sequence types associated with two serotypes can be taken into account
and this results in a model of six ordinary differential equations; (Greenhalgh et al., 2012).
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