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Abstract

In this essay we discuss Lévy processes and look at some of the mathematical ideas behind them.
The mathematical ideas we look at are measures, sigma-algebras and probability spaces. We
then look at two important results which enable us to determine the probability measures and
distributions of random variables. We then review the Lévy-Kintchine theorem which presents a
formula which is used to characterize Lévy processes by their characteristic functions. Finally we
consider properties and simulations of Lévy processes.
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1. Basics

1.1 Introduction

Lévy processes were named after the French mathematician Paul Lévy. They are stochastic
processes with stationary and independent increments. Lévy processes play a fundemental role
in financial mathematics and other fields of science such as physics, engineering and actuarial
science. In financial mathematics the main reason Lévy processes are important is that they can
desribe the observed reality of financial markets in more accurate ways than models based on
Brownian motion. The reason Lévy processes are accurate is that they can generalize Brownian
motion to include jumps. In real life, stock prices move discontinously and occasionally with large
jumps.

In this paper we will look at some important ideas pertaining to Lévy processes. In chapter two
we discuss the mathematical ideas of σ-algebras, measures, as well as probability spaces. We then
look at stochastic processes and discuss a few examples of such processes. The two important
examples we will look at are Brownian motion and Poisson processes. The main reason we discuss
these two examples is that they turn out to be Lévy processes. In the third chapter we discuss
two important ideas, characteristic functions and infinite divisibility, and look at some examples
of these ideas. The Lévy-Kintchine theorem, which enables us to characterize all Lévy processes
by looking at their characteristic functions, is discussed in the fourth chapter. We also state some
properties of Lévy process and perform some simple simulations.

1.2 Models Built on Brownian Motion

Brownian motion is a popularly-used stochastic process for modelling the fluctuation of stock
prices. We define Brownian motion as follows.

Definition 1.1 A stochastic process (Wt)t≥0 is called a standard Brownian motion if:

1. W0 = 0 (a.s.),

2. Wt −Ws ∼ N(0, t− s) implies stationary increment,

3. Wt is continuous in t ≥ 0 (a.s.),

4. for each n ≥ 1 and any times 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn, the random variables {Wtr −Wtr−1}
for r ≥ 1 are independent implies independent increment.

We will discuss Brownian motion in further detail in Chapter 2. From the beginning of financial
modelling, when the model of price St of an asset was proposed by Louis Bachelier at Paris Bourse
to be

St = S0 + σWt,
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Brownian motion and financial modelling have been tied together.

The Black Scholes model arised from the multiplicative version of Bachelier’s model, where the
log-price lnSt follows a Brownian motion with drift(a non-random linear component)

St = S0 exp[µt+ σWt].

Then by applying Itô’s formula the model is written in the so-called local form as a stochastic
differential equation for St:

dSt
St

= σdWt + (µ+
σ2

2
)dt.

The process St is called a geometric Brownian motion.

Black Scholes assume continuity in the sample paths, as this is one characteristic of Brownian
motion. This assumption is what makes this model behave inappropriately across different time
scales. Prices move in a discontinuous manner across different time scales, it is therefore important
that their behaviour is simulated appropriately because it is at discontinuous points where most
of the risk is concentrated. This has then led to the proposal of various models which allow for
jumps to occur. Such models are built from various stochastic processes. We will study in this
essay a class of stochastic processes called Lévy processes.



2. Preliminaries

2.1 Measures, σ-algebras and Probability Spaces

The notion of a measure can be generalized from familiar notions of length, area and volume to
more abstract notions. Let us take for instance a set D. Intuitively a measure µ on D associates
to a certain subset A ⊂ D a positive number µ(A) ∈ [0,∞]. The subset A to which a number
is associated is called a measurable set. We can naturally say that the empty set has measure 0:
µ(∅) = 0. If we have two disjoint measurable sets A and B, then their union A ∪ B should be
measurable. We can naturally define the measure of this union as µ(A∪B) = µ(A)+µ(B); this
is called the additivity property. This property can be extended to infinite sequences if (An)n∈N
is a sequence of disjoint measurable subsets, then

µ(
⋃
n≥1

An) =
∑
n≥1

µ(An).

It is also possible for µ to be infinite, for example take D = R then µ(R) = ∞. Since A ⊂ D
we have that A

⋃
Ac = D, where Ac is the complement of A. So if µ(D) < ∞ then µ(Ac) =

µ(D)−µ(A). It is therefore natural to require that any measurable set has its complement being
also measurable. The above discussion motivates the following definiton.

Definition 2.1 Let S be a non-empty set and F a collection of subsets of S. We call F a
σ-algebra if the following hold:

1. S ∈ F .

2. A ∈ F ⇒ Ac ∈ F .

3. If (An)n∈N is a sequence of subsets in F then
⋃∞
n=1An ∈ F .

The pair (S,F) is called a measurable space.

A measure on (S,F) is a mapping µ : F → [0,∞] that satisfies the following conditions

1. µ(∅) = 0.

2. µ (
⋃∞
n=1An) =

∑∞
n=1 µ(An) for every sequence (An)n∈N of mutually disjoint sets in F .

We then call the triplet (S,F , µ) a measure space. We will now specialize the idea of a measure
space to that of the probability space.

Definition 2.2 A probability space is a measure space (Ω,F ,P), with P(Ω) = 1. A measurable
set A ∈ F , called an event, is a set of scenarios to which probability can be assigned. A probability
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measure assigns a number between 0 and 1 to each event and we say that this number is the
probability that the event will occur. We have

P : F → [0, 1]

A 7→ P(A).

2.2 Stochastic Processes

Definition 2.3 A family {Xt : t ≥ 0} of random variables on Rd with parameter t ∈ [0,∞)
defined on a probability space (Ω,F , P ) is called a stochastic process.

The time parameter t in the definition can be either discrete or continuous, but we will only deal
with the continuous case in this paper. For each occurence of randomness ω ∈ Ω, we have a
trajectory X(ω) : t → Xt(ω) which is a function of time and it is called the sample path of
the process. We will assume that the sample paths are right continuous. However some of the
processes we will encounter will have discontinuous sample paths, e.g Poisson processes, hence
we need a space that will allow for discontinuous functions or functions with jumps. It is therefore
natural to consider a class of cadlag functions which includes discontinuous functions.

Definition 2.4 A function f : R+ → Rd is cadlag if it is right continuous with left limits, i.e.

f(t−) = lim
s→t,s<t

f(s),

f(t+) = lim
s→t,s>t

f(s),

both exist and f(t) = f(t+).

By interpreting the index t as a time, one must take into account the fact that events become
less uncertain as more information on that event becomes available with time. One must then
describe progressively how information on a particular event is revealed. This will be done by
introducing the notion of a filtration. This will then allow us to define other important ideas such
as past information, predictability and adaptiveness of the process.

Definition 2.5 A filtration or information flow on (Ω,F ,P) is an increasing family of σ-
algebras (Ft)t∈[0,∞] : Fs ⊆ Ft if s ≤ t.

Ft can be interpreted as the information available at time t, which increases with time. If F is the
set of all possible events, then Ft ⊆ F . We will denote the filtration (Ft)t∈[0,∞] by the symbol F.
A probability space which is equipped with a filtration F is called a filtered probability space and
it is denoted by (Ω,F ,F,P). One can instinctively say that the probability of the occurence of a
random event will change as more information is revealed with time. The filtration F describes
the information flow which can be used to distinguish quantities which are known given the
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current information from quantities which are still regarded as random at a given time t. An
observer can then decide whether an event A ∈ F has occured or not given the information Ft.
We call a random variable X an Ft-measurable random variable if the value of X can be
revealed at time t.

Definition 2.6 For i = 1, 2, let (Si,Fi) be measurable spaces. A mapping f : S1 → S2 is said
to be (F1,F2)-measurable if f−1(A) ∈ F1 for all A ∈ F2.

Definition 2.7 A stochastic process (Xt)t∈[0,∞] is said to be Ft-adapted with respect to the
information structure (Ft)t∈[0,∞] if for each t ∈ [0,∞], the value of Xt is revealed at time t : the
random variable Xt is Ft-measurable.

Most of the events that will be dealt with happen at random times, where a random time is a
positive random variable T ≥ 0 representing the time at which some event is going to take place.
Given an information flow (Ft), a natural question to ask is whether given the information Ft
one can determine if an event has happened (T ≤ t) or not (T > t). If this is true, then T is
called a stopping time, which we define formally as follows:

Definition 2.8 A random variable T : Ω → [0,∞] is a stopping time if the event {T ≤ t} ∈ Ft
for every t ∈ [0,∞].

Two fundamental examples of stochastic processes are the Poisson process and the Brownian
motion. We give a formal definition of these two stochastic processes.

2.2.1 Brownian Motion

In Chapter 1 we have defined Brownian motion in Definition 1.1. We will now elaborate on the
meaning of the properties of Brownian motion. Property (1) says that Brownian motion starts at
zero. Property (2) is called the independent increments property which implies that the process
at the current time does not depend on the previous process. Property (3) says that the distri-
bution of the increment Wt−Ws depends only on t− s and this property is called the stationary
increment property. Lastly, Property (4) simply says that the sample paths of the Brownian
motion are continuous.

Figure 2.1 illustrates a typical sample path of the Brownian motion.

2.2.2 Poisson Process

Definition 2.9 (Poisson process) Let (τi)i≥1 be a sequence of independent exponential random
variables with parameter λ and Tn =

∑n
i=1 τi. The process (Nt, t ≥ 0) defined by

Nt =
∑
n≥1

1t≥Tn
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Figure 2.1: Sample path of Brownian motion

is called a Poisson process with intensity λ on the probability space (Ω,F ,P).

The process Nt obeys the following conditions:

• For any t > 0, {Nt}t>0 is almost surely finite.

• For any ω ∈ Ω the sample path t 7→ Nt is piecewise constant and increases by unit jumps.

• The sample paths t 7→ Nt are cadlag.

• For any t > 0, Nt− = Nt with probability 1.

• For any t > 0, Nt follows a Poisson distribution.

• {Nt}t≥0 has independent increments, i.e. for any t0 < t1 < · · · < tn, Ntn−Ntn−1 , . . . , Nt1−
Nt0 are independent random variables.

• For any 0 < s < t, Nt−Ns has the same distribution as Nt−s, i.e the process has stationary
increments.

The Poisson process Nt counts the number of random times {Tn, n ≥ 1} occuring in the interval
[0, t], where the random times Tn are partial sums of a sequence of i.i.d. exponential random
variables. Poisson processes can be used to model different kinds of phenomena such as the arrival
of customers in a shop or the arrival of telephone calls at a switch board of a particular institution.
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Figure 2.2: Sample path of a Poisson process

Figure 2.2 shows a typical behaviour of the Poisson process.

We now give a brief discussion on the Gamma distribution which we will use to prove an important
property of the Poisson process.

Definition 2.10 (Gamma distribution) If a variable x > 0 has a Gamma distribution denoted by
Γ(α, β) where α is the shape parameter and β is the inverse scale parameter, then the probability
density function of x is:

f(x;α, β) = xα−1β
αe−βx

Γ(α)
. (2.1)

An exponential random variable X ∼Exp(λ) has a distribution f(x) = λe−λx, x > 0. We
observe that Exp(λ)∼ Γ(1, λ). The Gamma distribution has the following property concerning
summations.

Property 2.11 If Xi has a Γ(αi, β) distribution for i = 1, 2, . . . , N and the random variable
Y =

∑N
n=1Xi, then Y has the Gamma distribution

Y ∼ Γ

(
N∑
i=1

αi, β

)
.
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From this property we deduce the following lemma:

Lemma 2.12 If Tn =
∑n

i=1 τi where τi’s are i.i.d. Exp(λ) random variables for some λ > 0,
then Tn has the following probability density function:

f(x) = xn−1 λ
ne−λx

(n− 1)!
, x > 0.

Proof: Tn = τ1 +τ2 + · · ·+τn. Using the fact that Exp(λ)= Γ(1, λ) and Property 2.11 it follows
that Tn ∼ Γ(n, λ). This implies that Tn has the following probability density function:

f(x) = xn−1 λ
ne−λx

(n− 1)!
x > 0.

The following theorem states an important property of the distribution of a Poisson process:

Theorem 2.13 Let (Nt)t≥0 be a Poisson process, for any t > 0, the process (Nt)t≥0 follows a
Poisson distribution with parameter λt :

∀n ∈ N,P(Nt = n) =
e−λt(λt)n

n!
. (2.2)

Proof: We have

P(Nt = n) = P(Nt has exactly n jumps)

= P(Tn ≤ t, Tn+1 > t)

= E[P(Tn ≤ t, Tn+1 > t|Tn = s)]

= E[P(Tn+1 − Tn > t− s|Tn = s)]

=

∫ t

0

P(Tn+1 − Tn > t− s)dµTn(s)

=

∫ t

0

e−λ(t−s)λe−λs
(λs)n−1

(n− 1)!
ds

=
e−λtλn

(n− 1)!

∫ t

0

sn−1ds

=
e−λtλn

(n− 1)!

tn

n

=
e−λt(λt)n

n!
.

(2.3)

From this theorem we can immediately deduce the following corollary:

Corollary 2.14 Let (Nt)t≥0 be a Poisson process. Then the expectation is given by

E[Nt] = λt. (2.4)
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Proof:

E[Nt] =
∞∑
n=0

nP(Nt = n)

=
∞∑
n=0

n
e−λt(λt)n

n!

=
∞∑
n=1

e−λt(λt)n

(n− 1)!

= λt
∞∑
n=1

e−λt(λt)n−1

(n− 1)!

= λte−λteλt

= λt.

2.2.3 Compensated Poisson Process

Using the Poisson process we can define another process called the compensated Poisson process.

Definition 2.15 Let (Nt)t≥0 be a Poisson process with parameter λ. The process (N̄t)t≥0 defined
by:

N̄t = Nt − λt, t ≥ 0 (2.5)

is called a compensated Poisson process.

Figure 2.3 figure shows the sample paths of the compensated Poisson process.
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Figure 2.3: An example sample path of a compensated Poisson process



3. Lévy Processes, Characteristic
Functions and Infinite Divisibility

3.1 Lévy Processes

Lévy processes are essentially stochastic processes with stationary and independent increments.
This is a class of stochastic processes which encompasses the processes which are continuously
random as well as processes with jumps.

Definition 3.1 A stochastic process (Xt)t≥0 on Rd is stochastically continuous or continuous
in probability if, for every t ≥ 0 and ε > 0

lim
s→t

P[|Xs −Xt| > ε] = 0.

Definition 3.2 A stochastic process (Xt)t≥0 on Rd is a Lévy Process if it satisfies the following
conditions:

1. X0 = 0 a.s.

2. For any choice of n ≥ 1 and 0 ≤ t0 < t1 · · · < tn the random variables

Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1

are independent.

3. The distribution of Xs+t −Xs does not depend on s.

4. Xt is stochastically continuous.

Two important examples of Lévy processes are Brownian motion and Poisson processes as dis-
cussed in the previous chapter.

Below we give another important example of a Lévy process called the Lévy jump-diffusion.

Example 3.3 (Lévy jump-diffusion process)
Let:

Lt = bt+ σWt +
Nt∑
k=1

Jk − tλK. (3.1)

where b ∈ R is called the drift term, σ ∈ R+, W = (Wt)t≥0 is a standard Brownian Motion,
N = (Nt)t≥0 is a Poisson process with parameter λ (so that E[Nt] = λt), J = (Jk)k≥1 is an
independent and identically-distributed sequence of random variables with probability distribution
F , and E[J ] = K <∞. F describes the distribution of the jump size. The process Lt is defined
by the sum of the Brownian motion with drift and the compensated Poisson process.

Figure 3.3 shows a typical sample path of Lévy jump-diffusion.

11



Section 3.2. Characteristic Functions Page 12

Figure 3.1: Sample path of a Lévy jump-diffusion process

3.2 Characteristic Functions

The characteristic function of a random variable is the Fourier transform of its distribution. The
concept of characteristic functions is useful for studying random variables because many proba-
bilistic properties of random variables correspond to analytical properties of their characteristic
functions.

Definition 3.4 A moment generating function of a random variable X is the function MX

defined by
MX(t) = E[etX ]

for all t ∈ R for which this expectation exists.

Example 3.5 If X has a normal distribution with mean 0 and variance 1, i.e. X ∼ N(0, 1),
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then

MX(t) =

∫ ∞

−∞
etx

1√
2π
e−

1
2
x2

dx

= e−
1
2
t2
∫ ∞

−∞

1√
2π
e−

1
2
(x−t)2dx

= e−
1
2
t2

Similarly, if X ∼ N(µ, σ2) i.e. X has mean µ and variance σ2, then

MX(t) =

∫ ∞

−∞
etu

1√
2πσ2

exp(− 1

2σ2
(u− µ)2)du

= eµt
∫ ∞

−∞
exσt

1√
2π
e−

1
2
x2

dx, by substitution x =
u− µ

σ

= exp(µt+
1

2
σ2t2).

(3.2)

Definition 3.6 (Characteristic function) The characteristic function of an Rd-valued random
variable X is the function Φ : Rd → C defined by

ΦX(z) = E[ei〈z,X〉] =

∫
Rd

ei〈z,x〉µXdx. (3.3)

where µX is the distribution of X and 〈x, y〉 denotes the Euclidean scalar product.

The following results give a connection between moment generating functions and characteristic
functions. If the moment generating function MX of X is finite in a non-trivial neighbourhood of
the origion, the characteristic function of X may be found by substituting s = it in the formula
for MX(s):

ΦX(t) = MX(it), (3.4)

for t ∈ R.

The following theorem states some basic properties of characteristic functions. The first property
concerns the characteristic function of the sum of two independent random variables.

Theorem 3.7 If ΦX is a characteristic function, then:

1. If X and Y are independent random variables then

ΦX+Y (z) = ΦX(z)ΦY (z). (3.5)

2. ΦX(0) = 1.

3. ΦaX+b(z) = ei〈z,b〉ΦX(az), for constants a, b ∈ C
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Proof:

1. We have that:

ΦX+Y (z) = E[ei〈z,X+Y 〉]

= E[ei〈z,X〉ei〈z,Y 〉]

= E[ei〈z,X〉]E[ei〈z,Y 〉] by independence

= ΦX(z)ΦY (z).

2. This is trivial.

3. Using the linearity of the expectation:

ΦaX+b(z) = E[ei〈z,aX+b〉]

= E[ei〈z,aX〉ei〈z,b〉]

= ei〈z,b〉E[ei〈za,X〉]

= ei〈z,b〉ΦX(az).

In the following examples we find the characteristic functions of certain random variables.

Example 3.8 If X has a normal distribution with mean µ and variance σ2, then the moment
generating function of X is

MX(s) = exp(µs+
1

2
σ2t2)

as found in Example 3.5. Now using Equation 3.4 and substituting s = it we get

ΦX(t) = exp(iµt− 1

2
σ2t2)

which is the characteristic function of a random variable X ∼ N(µ, σ2).

Example 3.9 If a random variable X has an exponential distribution with parameter λ, then its
characteristic function is given by:

ΦX(z) = E[ei〈z,X〉]

=

∫ ∞

0

eizxλe−λxdx

= λ

∫ ∞

0

e(iz−λ)xdx

=
λ

iz − λ
[e(iz−λ)x]∞0

=
λ

iz − λ

[
lim
x→∞

e(iz−λ)x − 1]
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Using the result from complex analysis that absolute convergence implies convergence, we have

|e(iz−λ)x| = |eizxe−λx| = |eizx||e−λx| = e−λx.

We then have that limx→∞ e−λx = 0 which yields

ΦX(z) =
λ

iz − λ
[0− 1]

=
λ

λ− iz
.

Example 3.10 In this example we find the characteristic function of a univariate Levy jump-
diffusion process Lt which was defined in Example 3.3. Let:

Lt = bt+ σWt +
Nt∑
k=1

Jk − tλK.

The characteristic function of Lt is:

ΦLt(z) = E[ei〈z,Lt〉]

= E[exp i〈z, bt+ σWt +
Nt∑
k=1

Jk − tλK〉]

= E[exp(izbt+ izσWt + iz
Nt∑
k=1

Jk − iztλK)]

= E[exp(izbt)]E[exp(izσWt) exp(iz
Nt∑
k=1

Jk − iztλK)]

since the Brownian motion is independent of the jumps. We then get that

ΦLt(z) = exp(izbt)E[exp(izσWt)]E[exp(iz
Nt∑
k=1

Jk − iztλK)]. (3.6)

We also have that:
Wt ∼ N(0, σ2t) ⇒ E[eizWt ] = e−

1
2
σ2z2t

Nt ∼ Poisson(λt) ⇒ E[eiz
PNt

k=1 Jk ] = eλt(E[eizJ−1])

If we put these expectations in Equation 3.6 we get:

ΦLt(z) = exp(izbt) exp

[
−1

2
z2σ2t

]
exp[λt(E[eizJ − 1]− izE[J ])]

= exp(izbt) exp

[
−1

2
z2σ2t

]
exp[λt(E[eizJ − 1− izJ ])].
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Because the distribution of J is F , we have

= exp(izbt) exp[−1

2
z2σ2t] exp[λt

∫
R
(eizx − 1− izx)F (dx)].

We take t out as a common factor,

E[ei〈z,Lt〉] = exp[t(izb− z2σ2

2
+ λ

∫
R
(eizx − 1− izx)F (dx)]

which we can write as:

ΦLt(z) = etψ(z), (3.7)

where ψ(z) = izb− z2σ2

2
+ λ

∫
R(eizx − 1− izx)F (dx)

is called the characteristic exponent. From Equation 3.7 we then have that:

ΦL1(z) = eψ(z)

⇒ ΦLt(z) = (ΦL1(z))
t

We notice that the distribution of L1 tells us the distribution of the entire process Lt. This
distribution belongs to a class of infinitely divisible distributions which is the subject of our next
discussion.

3.3 Infinite Divisibility

Definition 3.11 The collection of all Borel sets on Rd, denoted by B(Rd), is called the Borel
σ-algebra. It is the σ-algebra generated by the open sets in Rd, that is the smallest σ-algebra
that contains all open sets in Rd. The elements of B(Rd) are called Borel sets.

Next we define an important notion called convolution which will be useful in finding the distri-
bution of the sum of two independent random variables.

Definition 3.12 Let M1(Rd) denote the set of all Borel probability measures on Rd.The con-
volution µ of two distributions µ1 and µ2 on Rd, denoted by µ = µ1∗µ2, is a distribution defined
by:

µ(A) = (µ1 ∗ µ2)(A) =

∫
Rd

µ1(A− x)µ2(dx),

for each µi, i = 1, 2 and each A ∈ B(Rd), where we note that A− x = {y − x, y ∈ A}.

Proposition 3.13 Suppose µ1, µ2 are probability measures, µ = µ1 ∗ µ2 and f a bounded Borel
function. Then ∫

Rd

f(y)(µ1 ∗ µ2)(dy) =

∫
Rd

∫
Rd

f(x+ y)µ1(dy)µ2(dx). (3.8)
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Definition 3.14 Let A be a non-empty set, the indicator function denoted by IA is defined as
follows:

IA(x) =

{
1 if x ∈ A
0 if x /∈ A

(3.9)

Theorem 3.15 Let A be a Borel set, X1 and X2 be independent random variables with distri-
butions µ1 and µ2 respectively, then the variable X = X1 +X2 has the distribution

µX = µ1 ∗ µ2.

Proof: Let

P(X1 +X2 ∈ A) = E(IA(X1 +X2))

=

∫
Rd

∫
Rd

IA(x+ y)p(dx, dy)

=

∫
Rd

∫
Rd

IA(x+ y)µ1(dx)µ2(dy)

because of independence of X1 and X2. By Proposition 3.13 we have that∫
Rd

∫
Rd

IA(x+ y)µ1(dy)µ2(dx) =

∫
Rd

IA(µ1 ∗ µ2)(dz)

=

∫
A

µ1 ∗ µ2(dz)

= µ1 ∗ µ2(A).

P(X1 + X2 ∈ A) = µ1 ∗ µ2(A) for all A ⊂ Rd implies that µ1 ∗ µ2 is the distribution of the
random variable X1 +X2.

Theorem 3.16 Let µ1, µ2 be distributions on Rd with characteristic functions Φµ1 and Φµ2

respectively. If µ = µ1 ∗ µ2, then the characteristic function Φµ of the distribution µ is:

Φµ = Φµ1Φµ2 (3.10)
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Proof: Let f1, f2, f be density functions of µ1, µ2 and µ respectively, x, y ∈ Rd then

Φµ(t) =

∫
Rd

eitxdµ(x)

=

∫
Rd

eitxf(x)dx

=

∫
Rd

eitx(f1 ∗ f2)(x)dx

(f1 ∗ f2)(x) =

∫
Rd

f1(x− y)f2(y)dy

Φµ(t) =

∫
Rd

eitx
∫

Rd

f1(x− y)f2(y)dydx

Making the substitution x = u+ y,

Φµ(t) =

∫
Rd

eit(u+y)
∫

Rd

f1(u)f2(y)dydu

=

∫
Rd

eituf1(u)du

∫
Rd

eityf2(y)dy

=

∫
Rd

eitudµ1(u)

∫
Rd

eitydµ2(y)

= Φµ1(t)Φµ2(t).

In the definitions that follow we define the Gausian distribution and the compound Poisson
distribution. We will use the results obtained in Theorem 3.16 to find the characteristic function
of the convolution of the two distributions. We will use this characteristic function when proving
the Lévy-Kintchine theorem in the next chapter.

Definition 3.17 µ1 is called a Gaussian distribution on Rd if:

Φµ1(z) = exp(−1

2
〈z, Az〉+ i〈γ, z〉) (3.11)

where γ, z ∈ Rd and A is a nonnegative-definite symmetric d× d matrix.

Definition 3.18 µ2 is a compound Poisson distribution if for some λ > 0 and measure F on Rd

with F ({0}) = 0, z ∈ Rd,

Φµ2(z) = exp[λ

∫
Rd

(eizx − 1)F (dx).] (3.12)

If we take the convolution of µ1 and µ2 in the Definitions 3.17 and 3.18 and use Theorem 3.16
we get that:

µ = µ1 ∗ µ2
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which implies that
Φµ(z) = Φµ1(z)Φµ2(z)

Φµ(z) = exp[−1

2
〈z, Az〉+ i〈γ, z〉+

∫
Rd

(eizx − 1)λF (dx)] (3.13)

We now define infinite divisibility.

Definition 3.19 Let X be a random variable taking values in Rd with distribution µX . We say
that X is infinitely divisible if for all n ∈ N there exist independent and identically distributed
random variables X

(1/n)
1 , . . . , X

(1/n)
n such that

X
d
=X

(1/n)
1 + · · ·+X(1/n)

n ,

where
d
= denotes equality in distribution.

Equivalently we can say that:
The distribution µX of a random variable X is infinitely divisible if for all n ∈ N there exists
another distribution µX(1/n) of a random variable X(1/n) such that

µX = µX(1/n) ∗ · · · ∗ µX(1/n)︸ ︷︷ ︸
n times

. (3.14)

We can also use the characteristic function of a random variable to characterise the infinite
divisibility.

Definition 3.20 The distribution of a random variable X is infinitely divisible if for all n ∈ N,
there exists a random variable X(1/n), such that

ΦX(z) = (ΦX(1/n)(z))n

The following are examples of infinitely divisible distributions. We will show that the examples
are infinitely divisible using Definition 3.20.

1. (Normal distribution), Let X ∼ N(µ, σ2). The characteristic function of the variable X is
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given by

ΦX(z) = E[ei〈z,x〉]

=

∫
Rd

ei〈z,x〉dµX(x)

= exp[izµ− 1

2
z2σ2]

= exp[izn
µ

n
− 1

2
z2n

σ2

n
]

= exp[n(iz
µ

n
− 1

2
z2σ

2

n
)]

= (exp[iz
µ

n
− 1

2
z2σ

2

n
])n

= (ΦX(1/n)(z))n,

i.e. X(1/n) ∼ N(µ
n
, σ

2

n
).

2. (Poisson distribution), Let X ∼ Poisson(λ) be a random variable, then

ΦX(z) = E(ei〈z,x〉)

=

∫
Rd

ei〈z,x〉dµX(x)

= exp[λ(eiz − 1)]

= exp[n
λ

n
(eiz − 1)]

= (exp[
λ

n
(eiz − 1)])n

= (ΦX(1/n)(z))n,

i.e. X(1/n) ∼ Poisson(λ
n
).

Thus the Normal distribution and Poisson distribution are infinitely divisible.



4. Lévy-Kintchine Theorem

4.1 Lévy-Kintchine Formula

In this chapter we will look at the Lévy-Kintchine theorem. The theorem presents a useful formula
which enables us to characterise the infinite divisibility of Lévy processes by their characteristic
function. This emphasizes the strength of the connection between Lévy processes and infinite
divisibility. We will start by listing some important theorems and definitions that will be useful in
the proof of the main theorem.

Theorem 4.1 (Lévy continuity) If (φn)n∈N is a sequence of characteristic functions and there
exists a function ψ : Rd → C such that for all u ∈ Rd, φn(u) → ψ(u) as n → ∞ and ψ is
continuous at zero, then ψ is the characteristic function of a probability distribution.

Proof: See [CK98]

Definition 4.2 (Lévy measure) Let ν be a Borel measure defined on Rd\{0} = {x ∈ Rd, x 6= 0}.
ν is a Levy measure if

ν({0}) = 0 and

∫
Rd\{0}

(|y|2 ∧ 1)ν(dy) <∞, (4.1)

where (|y|2 ∧ 1) = min{|y|2, 1}.

The Lévy measure describes the expected number of jumps of a certain height in a time interval
of unit length 1. If ν is a finite measure, i.e ν(R) =

∫
R ν(dy) = λ <∞, then

F (dy) :=
ν(dy)

λ
is a probability measure. Thus λ is the expected number of jumps and F (dy)

the distribution of the jump size y. If ν(R) = ∞, then an infinite number of jumps is expected.
Properties such as activity and variation about the path of a Lévy process can be derived from
its Lévy measure.

Theorem 4.3 A Borel probability measure µ is infinitely divisible if there exists a vector b ∈ Rd,
a positive-definite symmetric d × d matrix A and a Lévy measure ν on Rd \ {0} such that, for
all u ∈ Rd,

Φµ(u) = exp

{
ei〈b,u〉 − 1

2
〈u,Au〉+

∫
Rd\{0}

[ei〈u,y〉 − 1− i〈u, y〉IB̂(y)]ν(dy)

}
(4.2)

where B̂ = B1(0) = {y ∈ Rd : |y| < 1} and |y| denotes the Euclidean norm of y ∈ Rd.

Converse: Any mapping of the form of Equation (4.2) is a characteristic function of an infinitely
divisible probability measure on Rd.

21



Section 4.1. Lévy-Kintchine Formula Page 22

Proof: We only state the proof of the converse.This implies that we must show that the right-
hand side of Equation (4.2) is a characteristic function. Let (α(n), n ∈ N) be a sequence in Rd

that is monotonically decreasing to zero.
Define for all u ∈ Rd, n ∈ N

Φn(u) = exp

{
i〈b−

∫
[−α(n),α(n)]c

T
B̂

yν(dy), u〉 − 1

2
〈u,Au〉+

∫
[−α(n),α(n)]c

(ei〈u,y〉 − 1)ν(dy)

}
.

(4.3)
Each Φn represents the convolution of the normal distribution with an independent compound
Poisson distribution as in Equation (3.13) and it is therefore the characteristic function of a
probability measure µn. We notice that

Φµ(u) = lim
n→∞

Φn(u).

Using the Lévy continuity Theorem 4.1 and by showing that Φµ(u) is continuous at zero, it
follows that Φµ is a characteristic function. To show this we let

ψµ(u) =

∫
Rd\{0}

[ei〈u,y〉 − 1− i〈u, y〉IB̂(y)]ν(dy)

and we must show that ψµ is continuous at zero. Since ν is a Lévy measure we have

ψµ(u) =

∫
B̂

[ei〈u,y〉 − 1− i〈u, y〉]ν(dy) +

∫
B̂c

(ei〈u,y〉 − 1)ν(dy).

Using the identity

eiu =
n−1∑
k=0

(iu)k

k!
+ θ

|u|n

n!
,

where θ ∈ C satisfying |θ| < 1, we have for n = 2 that

ei〈u,y〉 = 1 + i〈u, y〉+ θ
|〈u, y〉|2

2

⇒ ei〈u,y〉 − 1− i〈u, y〉 = θ
|〈u, y〉|2

2

⇒ |ei〈u,y〉 − 1− i〈u, y〉| ≤ θ
|u|2|y|2

2
by the Cauchy-Schwartz inequality. This implies that∫

B̂

|ei〈u,y〉 − 1− i〈u, y〉|ν(dy) < |u|2

2

∫
B̂

|y|2ν(dy) → 0 as u→ 0,

since
∫
B̂
|y|2ν(dy) <∞ as ν is a Lévy measure.

Also ∫
B̂c

|ei〈u,y〉 − 1|ν(dy) = 0 if u = 0
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since ν({0}) = 0 (see Definition 4.2).
This shows that ψµ(u) is continuous at zero which in turn implies that Φµ(u) is continuous at
zero. By the Levy-continuity theorem Φµ is a characteristic function of an infinitely divisible
random variable.

4.2 Properties of Lévy Process

From Theorem 4.3 we call the triplet (b, A, ν) the characteristic or Lévy triplet. From the
characteristic triplet we get the following properties about the path of a Lévy process.

Proposition 4.4 Let L be a Lévy process with triplet (b, A, ν). Then

1. If ν(R) < ∞ then almost all paths of L have a finite number of jumps on every compact
interval. The Lévy process is said to be of finite activity in that case.

2. If ν(R) = ∞ then almost all paths of L have an infinite number of jumps on every compact
interval. In this case the Lévy process has infinite activity.

Proof: See Theorem 21.3 in Sato (1999).

Lévy measure determines whether a Lévy process has finite variation or not.

Proposition 4.5 Let L be a Lévy process with triplet (b, A, ν)

1. If A = 0 and
∫
|x|≤1

|x|ν(dx) <∞ then almost all paths of L have finite variation.

2. If A 6= 0 or
∫
|x|≤1

|x|ν(dx) = ∞ then almost all paths of L have finite variation.

Lévy measure can also determine the existence of moments of the Lévy process.

Proposition 4.6 Let L be a Lévy process on Rd with characteristic triplet (b, A, ν), and B̂ be
an open ball as defined in Theorem 4.3. Then

1. E[L(t)] = tE[L(1)] if and only if ∫
Rd

|y|IB̂(y)ν(dy) <∞,

and in this case

E[L(1)] = bt+

∫
Rd

|y|IB̂(y)dy.

2. E[L(1)2] <∞ if and only if ∫
Rd

|y|2IB̂(y)ν(dy) <∞,

and then

E[L(1)2] =

∫
Rd

|y|2ν(dy) + A.
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4.3 Simulating Lévy Processes

The following algorithm describes how to simulate Lévy jump-diffusion on a fixed-time grid. Re-
call that Levy jump-diffusion is the sum of a Brownian motion and a compensated Poisson process.

• Algorithm for Brownian motion with drift µ.
The formula is given as dXt = µdt+ σdBt

Let
Xt+4t = Xt + µ4 t+ σ4Bt,

where Bt ∼ N(0,4t), i.e 4Bt is a Gaussian random variable with mean 0 and variance
4t.

• Algorithm for compound Poisson process.
Initialize k = 0

Repeat while
∑k

i=1 Ti < T
Set k = k + 1.
Simulate Tk ∼ exp(λ).
Simulate Yk from distribution µ = ν/λ.
The trajectory is given by

Xtj = bti +Xt+4t +
Nt∑
i=1

Yi, where Nt = sup{k :
k∑
i=1

Ti ≤ t}.

The following code written in octave implements the Lévy jump-diffusion process.

function D=jumpdiff(lam,mu,var,t)
X=0;
dt = 0.05;
N=length(t);
B=zeros(1,N);
for j=1:N
dBt=randn(1)*sqrt(dt);
X = X+mu*dt+var*dBt;
B(j)=X;
end
B; returns a vector holding information about variables which follow Brownian motion

TT = 0;
k=0;
N = length(t);
while sum(TT(1:k)) < t(N)



Section 4.3. Simulating Lévy Processes Page 25

k=k+1;
Tk= (-1*log(rand())/log(exp(1)))/lam; simulating Tk which exponentially distributed
if k > 1
TT=[TT,Tk];
else
TT=Tk;
end
yk=(-1*log(rand())/log(exp(1)))/(lam*lam) simulating yk from distribution nu/lambda
if k > 1
y=[y,yk];
else
y=yk;
end
end
X=zeros(1,N);
w=0;
for j=1:N
while sum(TT(1:w))¡=t(j)
w=w+1;
end
n=w-1;
X(j)=sum(y(1:n));summing n number of events occuring at time t
end
X; returns a vector which holds information about compound poisson process
D=zeros(1,N);
for k=1:N
D(k)=X(k)+B(k);
end
D; vector for plotting data which give a jump-diffusion process

The following plots are obtained from the above simulation.

1. For the simulation Brownian motion see Figure 2.1.

2. Figure 4.1 shows the simulation of Lévy jump-diffusion process . The top figure is for the
compound Poisson process. The bottom figure is for the Lévy jump-diffusion process. The
vertical line represents a jump.
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Figure 4.1: The simulation of sample path of compound Poisson process(top) and Lévy jump-
diffusion process(bottom)

4.4 Summary

We considered the notion of probability space which is a space where stochastic processes are
defined. Some stochastic processes are continuous and others are discontinuous, hence we need
a space which accomodates both processes and for this we use a class called cadlag processes.
The idea of filtration provides a way of revealing more information about a particular event as
time progresses. Lévy processes are stochastic processes with stationary and independent incre-
ments. Two important examples of Lévy processes are Brownian motions and Poisson processes.
Characteristic functions and infinite divisibility play an important role in describing the probability
measure of a Lévy process. This is shown in the Lévy-Kintchine theorem. This theorem presents
a Lévy-Kintchine formula which is used to characterize the measure of an infinitely-divisible ran-
dom variable by its characteristic function. The properties of a Lévy process are derived from
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its Lévy measure. The measure determines whether the Lévy process has finite variation or not.
The activity property tells us whether the path of a Lévy process has finite or infinite number of
jumps. We finally considered an algorithm for implementing the Lévy jump-diffusion process and
gave some code written in octave which implements the algorithm.
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[App04] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced
Mathematics, no. 133, Cambridge University Press, 2004.

[CK98] M. Capinski and E. Kopp, Measure, Integrals and Probability, Springer-Verlag, 1998.

[CT03] R. Cont and P. Tankov, Financial modelling with jump processes, Chapman and
Hall/CRC, 2003.

[GW86] G. Grimmet and D. Welsh, Probability, An Introduction, Oxford science Publications,
1986.

[Mar07] T. Marquardt, An introduction to financial mathematics in continous time, Center for
Mathematical Sciences Munich University of Technology, 2007.
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